Ge Detector Test Bench for Front End and Signal Processing at LNGS

Gerdella

A. D'Andragora, C. Cattadori, A. di Vacri, M. Junker, S. Riboldi, C. Ur

Outline

•Description of *Gerdella*: the encapsulated detector bench test.

Test performed
1st test cool down
2nd cool down: warm Amptek 250 CSA readout
3rd cool down: cold IPA4 monolithic jfet CSA readout

Purposes of the Gerdella bench test

- Test of cold FE circuits in same conditions for comparison and final choice.
- Study of resolution vs FE-detector distance.
- Test and debugging of the FADC based DAQ Gerda-Phase I system (and training of people)
- Further development of Pulse Shape Analysis (PSA) algorithms collected in the Jspecview suite.
 (Moving Window Deconvolution, Optimum Filter, etc.)

Goals of present work

•Tuning of Gerdella (Detector handling, cool down, Front end – Detector connection, cabling, noise reduction, etc.)

Bench-Test

Detector

•Ge capsule of former Euroball exp. •N-type, positive HV 4500V

Bench-Test Location: LNGS Autorimessa 7

Flange and suspension system

Detector

Teflon stick

Dewar

Bench-Test Flange and suspension system

Winch used to slowly lower the detector in the cryogenic bath, to allow slow dilatation of materials
Signal connectors Fischer 102-104 (signals, LVs, PT1000 etc.)
HV flange: sealed Padova design equipped with 10 m long HV coaxial cable

Bench-Test

Cooling down

 Cooling down speed (20K/h) regulated by: detector lowering speed, cold finger, power resistor

• PT1000

Monitor detector's temperature
to track level of LAr

Before submerging the detector several tests performed with a mock-up to tune the lowering speed

Performed test of front-end electronics

 Circuits tested with detector: AMPTEK A250 (warm) IPA4 (InterFET) (cold)
 Circuit test without detector CMOS Fully Differential with Integrated Input Transistors

•Pulse Processing:

<u>Standard γ-Spectroscopy</u>: ORTEC 672 Spectroscopy
 Amplifier+919E EtherNIM Multi-Channel Buffer

✓ <u>PCI-NIM based DAQ System:</u> CAEN N1728 four-channel digital pulse processor and waveform digitzier in one unit NIM format, 100MHz (10 ns/sample) 14 bit FADC, 10 ms max sampling time

"Oscilloscope" mode and "Energy" mode (Moving Window Deconvolution algorithms)

Circuit connected directly on flange to avoid noise introduced by cables

$$R = 1\%_{00} = 1.2 keV$$

Background Spectrum with Detector: Readout: AMPTEK 250 (warm)

Acquired: 24.01.08 19:47:59 Real time 48008.48sec Live time: 47957.08sec Channels:16384

Measured Intrinsic Noise of IPA4 (warm)

$$V_{AL+} = 12V$$

$$V_{AL-} = -3.8V$$
Elind
$$R_F = 1G\Omega, \quad C_F = 1pF$$

$$C_{DET} = 27 pF$$

$$C_T = 1pF$$

R = 2.4 keV @ 1600 keV $1.5 \%_{00}$

Detector readout by cold IPA4

Acquired: 06.02.08 14:413:49 Real time 611.06sec Live time: 600.00sec Channels:16384

Detector readout by cold IPA4

Acquired: 06.02.08 14:413:49 Real time 611.06sec Live time: 600.00sec Channels:16384

Pulse acquisition by FADC and processing by JspecView IPA4: Pulser – τ_{rise} – τ_{fall}

Measurement of intrinsic noise by FADC IPA4 (warm)

Projection of pre-trigger samples on the y axis: estimation of rms noise

Pulse Amplitude determination by Moving Window Deconvolution Algorithms: IPA4 (warm)

Estimation of rms noise with Detector connected Projection of base line samples on the y axis:

8mv

FFT Bode Plot (V² vs Hz): Noise identification

Spectroscopy by Pulse Shape Analysis with present noise situation Detector irradiated by Co60 – IPA4 cold

Very Preliminar: Optimum Filter analysis from acquired pulses:

R =0.6% not yet optimized

Conclusions

Cooling-down procedure repetible, reproducible and working
Spectroscopy measurements performed to validate bench test
PSA analysis performed to study noise, distribution of relevant parameters, and finally produce spectra.

• PSA algorithms working but not yet tuned (R_{PSA} worse than R_{Spectroscopy)}

•Results obtained with the detector are not limited by amplifiers but affected by environmental conditions:

Argon boil off makes vibrations, introducing low frequency noise

→ change the dewar (consumption 1.6l/h)
 ✓ High frequency noise (100-500KHz, seen in FFT) caused by ground connection

→change grounding scheme

Test after modifications with HV capacitors to simulate the detector, acquire pulses, perform FFT/OF.