Overview	Preliminaries	Boundary Conditions	Simulations

Status of Calibration

Francis Froborg

University of Zurich

GERDA Collaboration Meeting, Cracow 18. February 2008

Teststand

Overview	Preliminaries	Boundary Conditions	Simulations	Teststand
Overview				

3 Boundary Conditions

④ Simulations

Overview	Preliminaries	Boundary Conditions	Simulations	Teststand
Prelimir	naries			

Simulations from Munich 2005

- Old phase II configuration
- Collimator material: lead
- \bullet Used opening angles for collimator: 60° and 120°
- Used sources: $^{22}\mathrm{Na},~^{26}\mathrm{AI},~^{57}\mathrm{Co},~^{60}\mathrm{Co}$ and $^{88}\mathrm{Y}$

Results

- Best opening angle: 120°
- One run for each detector layer
- Possible sources: ²²Na, ²⁶Al or ⁶⁰Co

Boundary Conditions

- Position of the sources
- Maximum diameter of collimator: 50mm
- Minimum weight: \sim 4kg
- Possible collimator materials: copper or tungsten
- Same mounting system as detectors
- Park position at the neck of the vessel

MCS: Goals

Figuring out for phase I & II separately:

- Sort and strength of sources
- Collimator material and geometry
- Frequency of runs
- Efficiency of energy deposition in the detector
- Efficiency of pulse shape analysis
- Influence of sources in parking position on measurements

- Installing MaGe
- Familiarize with MaGe and especially with parts relevant for Calibration simulations
- First comparisons with Munich results

Overview	Preliminaries	Boundary Conditions	Simulations	Teststand
γ Sources				

- $\bullet~^{228}\text{Th}$ and ^{60}Co sources, capsule A3029 (M4 thread), 100 kBq
- ⁵⁷Co capsule A.3224, and ¹³⁷Cs capsule P02, 74 kBq
- All encapsulated from Eckerd & Ziegler, IP Berlin

A3224-1

Overview	Preliminaries	Boundary Conditions	Simulations	Teststand
Teststand				

Why?

• Verifying MCS for calibration

How?

- One Ge-detector (first unsegmented, later segmented)
- One calibration source
- Optical Ge dummies to simulate remaining detectors
- Everything in dewar with LN or LAr

