Very high-energy emission from microquasars

Gustavo E. Romero

Instituto Argentino de Radioastronomía (CONICET) University of La Plata

romero@iar-conicet.gov.ar

- romero@fcaglp.unlp.edu.ar
- http://www.iar-conicet.gov.ar/garra/

Heidelberg, November 30 – December 3, 2010

Extragalactic Jets in the Fermi Gamma-Ray Sky as Seen by the MOJAVE VLBA Program

AGNs produce gamma-ray emission

Southern Lines and the

NGC 7793: Pakull et al. (2010)

Cygnus X-1: Stirling et al. (2001), Gallo et al. (2005)

- ATOMIC NUCLEI MOVING AT 0.26c
 MECHANICAL LUMINOSITY > 10³⁹
 erg/sec
 NON RADIATIVE JETS = "DARK" JETS
- >50% OF THE ENERGY IS NOT RADIATED

Radio (Dubner et al); X-rays (Brinkmann et al)

SS 433

Cygnus X-3: Mioduzewski et al. (2001)

Cygnus X-3: Martí, Paredes, et al. (2001)

...and gamma-rays

http://cosmo-noticias.blogspot.com

Cygnus X-3: Fermi collaboration (2009)

...and gamma-rays

Cygnus X-3: AGILE collaboration (2009)

Galactic accreting black holes can also produce jets

A "basic" jet model (in a nutshell)

Physical conditions near the jet base are similar to those of the corona (e.g. Bosch-Ramon et al. 2006; Romero & Vila 2008, 2009; Vila & Romero 2010)

• The jet launching region is quite close to the central compact object (few R_g)

- Thermal plasma injected at the base, equipartition b/w particles and magnetic field to start with.
- Jet plasma accelerates longitudinally due to pressure gradients, expands laterally with sound speed (Bosch-Ramon et al. 2006)
- The plasma cools as it moves outward along the jet. Solve the continuity equation for cooling of the electron and proton energy distributions

A "basic" jet model (in a nutshell)

- Physical conditions near the jet base are similar to those of the corona (e.g. Bosch-Ramon et al. 2006; Romero & Vila 2008, 2009; Vila & Romero 2010)
- The jet launching region is quite close to the central compact object (few R_g)

- Thermal plasma injected at the base, equipartition b/w particles and magnetic field to start with.
- Jet plasma accelerates longitudinally due to pressure gradients, expands laterally with sound speed (Falcke 1996, Bosch-Ramon et al. 2006)
- The plasma cools as it moves outward along the jet. Solve the continuity equation for cooling of the electron and proton energy distributions

$$\nu_{\rm b} \frac{\partial N(E,z)}{\partial z} + \frac{\partial \left[b(E,z)N(E,z)\right]}{\partial E} + \frac{N(E,z)}{T_{\rm d}(E)} = Q(E,z). \label{eq:vb}$$

Jet model

Conical jet, perpendicular to binary orbit Mildly relativistic outflow

Moderate viewing angle

Compact acceleration/emission region

✓ Content of relativistic particles

$$L_{jet} = 0.1L_{acc}$$
Falcke & Biermann (1995)
Körding *et al.* (2006)

$$L_{rel} = 0.1L_{jet} \approx 2 \times 10^{37} \text{ erg s}^{-1}$$

$$L_{rel} = L_p + L_e \quad L_p = aL_e$$

✓ Magnetic field close to equipartition (at the base)

$$\frac{B_{\rm o}^2}{8\pi} = U_{\rm jet}^{\rm kin}(z_{\rm o}) \Longrightarrow B_{\rm o} \approx 10^7 G$$

$$B(z) = B_0 \left(\frac{z_0}{z}\right)^{-m} \quad 1 \le m \le 2$$

Shocks develop when the magnetic energy decreses and charged particles are re-accelerated by a Fermi-like mechanism (alternatives: converter mechanism – Derishev , local magnetic reconnection – Lyubarsky). Power-law populations of non-thermal particles are injected. These particles will interact with the local fields, producing non-thermal radiation.

A hadronic model for jets is a model that represents radiative processes triggered by protons or other nuclei. There is not such a thing as a *purely hadronic radiative model* in astrophysics. All models are actually lepto-hadronic, since relativistic hadronic interactions unavoidably lead to meson production and the subsequent injection of leptons in the system.

Proton microquasar jet model

(Romero et al. 2003; Aharonian et al. 2006; Romero & Vila, 2008, 2009; Vila & Romero 2010)

Interaction of relativistic *p* and *e*⁻ with

- Synchrotron radiation
- Inverse Compton (IC)

$$p, e^- + B \rightarrow p, e^- + \gamma$$

$$e^- + \gamma \rightarrow e^- + \gamma$$

• Proton-proton inelastic collisions $p + p \rightarrow p + p + a \pi^0 + b(\pi^+ + \pi^-)$

• Photohadronic interactions $(p\gamma)$ $p + \gamma \rightarrow p + e^+ + e^-$

$$p + \gamma \rightarrow p + c \rightarrow c$$

$$e^{\pm} + B \rightarrow e^{\pm} + \gamma$$

$$\pi^{o} p \rightarrow 2\gamma \rightarrow p + a\pi^{o} + b(\pi^{+} + \pi^{-})$$

$$\pi^{i} p + \gamma \rightarrow n + \pi^{+} + a\pi^{o} + b(\pi^{+} + \pi^{-})$$

$$(v_{\mu})$$

Particle losses

Fig. 1. Acceleration and cooling rates at the base of the jet for primary protons and electrons, and secondary pions and muons, calculated for representative values of the model parameters (proton-to-lepton energy ratio a = 1000, and primary injection spectral index $\alpha = 1.5$). The acceleration efficiency parameter η is indicated.

Spectral energy distributions

Fig. 2. Spectral energy distributions of a proton-dominated microquasar (a = 1000). Each panel corresponds to a different acceleration efficiency ($\eta = 0.1$ on the left, $\eta = 0.01$ on the right).

Romero & Vila, A&A, 494, L33 (2009)

Magnetic field effects on neutrino

Reynoso & Romero A&A, 493, 1 (2009)

Magnetic field effects on neutrino production

Reynoso & Romero A&A, 493, 1 (2009)

PAMELA positron fraction

Positrons are copiously produced by internal absorption and charged muon decays in MQs jets

Annihilation line distribution

LMXRBs distribution

INTEGRAL results (Weidenspointener et al., Nature 451, 159, 2008) Models with a=100 produces around 10⁴² positrons/s

Lepto/hadronic models for LMXRB (Vila & Romero, MNRAS 403, 1457, 2010)

GX 339-4

An application – Vila & Romero, extended-zone model, 2011 Fit to the spectrum of the LMMQ XTE J1118+480

2000 outburst

Markoff et al. 2001, A&A

Internal absorption (Vila & Romero, 2010)

Absoption effects: yy annihilation (Vila & Romero 2011)

"Dark" HE MQ (Romero & Vila 2008)

However, a strong neutrino source...

High-mass donor star

Bosch-Ramon, Romero, Paredes, 2006, A&A 447, 263

High-mass donor star: Cygnus X-1

External absorption

Romero, del Valle, & Orellana, 2010, A&A 518, A12; see also Bosch-Ramon, Khangulyan & Aharonian, 2008, A&A, 489, L21

G. E. Romero et al.: Gamma-ray flares in Cyg X-1

Z>10¹² cm

Araudo, Bosch-Ramon & Romero A&A, 503, 673 (2009), Owocki et al. 2009, ApJ, 696, 690 (2009)

Final comments

- MQs produce gamma-rays, likely in the jets.
- The consistency of the models presented can be tested with present and future gamma-ray and neutrino observations (IceCube, Fermi, CTA...).
- MQs can be sources of comic rays up to energies of the order of the knee.
- MQs can also be an important source of positrons in the Galaxy.

Thank you

MA

Flaring TeV emission?

If the wind has a clumpy structure, then jet-clump interactions can produce rapid flares of gamma-rays

Romero et al. 2007, astro-ph/0708.1525

Effects of the stellar wind

Owocki et al. 2009, ApJ, 696, 690

Araudo, Bosch-Ramon & Romero A&A, 503, 673 (2009)

Fig. 3. Acceleration and radiative loss (synchrotron and IC) time for \sim electrons in the bow-shock region. The advection and diffusion times are shown for $R_c = 10^{10}$ (thin line) and 10^{11} cm (thick line). This figure corresponds to the case $B_{\rm bs} = 1$ G.

Local particle re-acceleration

Araudo, Bosch-Ramon & Romero A&A, 503, 673 (2009)

Fig. 7. SEDs for different values of B_{bs} and R_c ; the curves of both absorbed and unabsorbed (thin lines) IC and pp radiation are shown.

Araudo, Bosch-Ramon & Romero A&A, 503, 673 (2009)