Particle acceleration in the context of Gamma-ray Binaries

Frank M. Rieger

Workshop "Variable Galactic Gamma-Ray Sources" Heidelberg, November 30th, 2010

Max Planck Institut für Kernphysik Heidelberg, Germany

GAMMA-RAYS FROM BINARIES

Outline

★_Motivation: On extreme particle acceleration in LS 5039 (requirements)

Requirements (Efficiency, spectral index)

 \star _On possible particle *acceleration sites* in binary systems

- "Termination" shock (PW-SW)
- Relativistic (re-accelerated post-shock) PW flow
- Striped pulsar wind
- Mildly relativistic jet (µQ)

 \star _On possible non-thermal, particle acceleration mechanisms

- Fermi-type particle acceleration
- Reconnection

★ _What to expect for Gamma-Ray Binaries?

On extreme particle acceleration in LS 5039

_Periodically modulated TeV emission at Porb=3.9 d

- produced inside or very close to system
- due to γγ-absorption and anisotropic IC

_VHE spectrum extends well beyond 10 TeV (HESS+ 06)

- ▶ stellar radiation peaks ~10 eV (T~4 ×10⁴ K)
- ► IC scattering (KN!) needs >10 TeV electrons

Acceleration efficiency $t{acc} := \eta r_g/c$

- min. variability ~I hr gives lower limit on B
- From t_{acc} ≤ min(t_{IC,KN}, t_{syn}): (Khangulyan+ 08) η < 100 (z<5 R_{orb}), and η < 10 if deep inside</p>

_Recent Suzaku observations

(Takahashi+ 09)

(1-10 ke

- ► X-ray power law \Rightarrow n_e(γ) = n₀ γ ^{-s}, s \approx 2
- "periodic": if due to adiabatic cooling $\eta \leq 3$

(I) "Termination" shock: (Dubus 06; [K&C 84])

- standoff distance given by pressure balance
- ▶ located deep in system: Rt ~Rorb/10 ~10¹¹ cm
- in contrast to isolated pulsars: $R_t \sim 10^3 r_L$
- ordered, relativistic flow of particles and fields is randomized (*Ist order Fermi?*)

Pulsar wind:

- expected to be highly relativistic with $\Gamma >> I$
 - launched as Poynting flux dominated wind
 - $\sigma = B^2/(4\pi n m_e c^2 \Gamma) >> 1$
 - asymptotic radial flow speed $\Gamma \sim \sigma^{1/2} > 100$
 - σ -problem: want to have $\sigma << 1$ at shock
- how to achieve efficient conversion?

BINARY PULSAR Cometary radio emmission Pulsar Pulsar Disk outflow F. Mirabel 2006

(2) Relativistic post-shock flow:

Interaction of relativistic pulsar wind ($\Gamma \sim 10^6$) with non-relativistic stellar wind (Bogovalov+ 08)

- Hydro-limit (no m.f.; cold, isotropic winds)
- post-shock flow gets accelerated to $\Gamma \sim 100$
 - adiabatically (transfer thermal heat to bulk motion)
- confined to rather narrow region
- significant flow velocity gradients possible (shear acceleration?)

(3) "Striped pulsar wind" shock

Current pattern induced by an oblique rotator separating stripes of different polarity

- ▶ small wavelength 2π r_L << R_t
- cannot continue to r→∞ as carriers in sheet n~1/r², while surface current j_s=∫jdx
 ~ B_θ ~1/r
- presumably magnetic field reconnects
- dissipation rate probably too slow (Kirk & Skjaeraasen 03)
- $\blacktriangleright \sigma$ still high at termination shock
- Reconnection at termination shock (Petri & Lyubarsky 07)

current sheets e.g., Michel 71; Coroniti 90; Bogovalov 99; Contopoulos 06

(4) Mildly relativistic jet (µQuasar)

BH-jet, accretion-powered scenario

- collimated outflow with θ ~ several degree
- ▶ mildly relativistic speeds expected v_j~0.5-0.7 c
- emission could emerge from different scales
- ▶ Fermi-type particle acceleration

(I) Fermi-type "stochastic" particle acceleration

based on Fermi's original concept:

kinematic effect: particle acceleration as result of scattering off randomly moving magnetic inhomogeneities ("magnetic clouds")

Characteristic energy change per scattering:

$$\Delta \epsilon := \epsilon_2 - \epsilon_1 = 2\Gamma^2 \epsilon_1 \left(\frac{u^2}{c^2} - \frac{u}{c} \frac{\vec{p}\vec{u}}{|\vec{p}||\vec{u}|} \right)$$

energy gain for head-on, loss for following collision

(I.I) "2nd order Fermi" acceleration:

- scattering off magnetic turbulence (Alfven waves)
- average over all momentum directions:
 - (-) very small energy gain in low- σ flows
 - (-) tends to give flat spectra s < 2 (e.g. Virtanen+ 05; R+ 07)
 - (+) "distributed" mechanism

⁽Phys. Rev. 75, 578 [1949])

(I.2) "Ist order Fermi" (shock)

better if only head-on collisions:

$$\Delta \epsilon := \epsilon_2 - \epsilon_1 = 2\Gamma^2 \epsilon_1 \left(\frac{u^2}{c^2} - \frac{u}{c} \frac{\vec{p}\vec{u}}{\vec{p}||\vec{u}|} \right)$$

- ▶ late '70s: applies to shock propagating through plasma (e.g. Krymsky'77; Bell'78)
 - non-relativistic shocks:
 - (±) "reasonably" efficient
 - (+) s fixed by compression ratio: (s=2 for strong shock)
 - (s=2 for strong shock)

- (+) efficient enough $t_{acc} \sim t_L$
- (±) "universal" index $s \approx 2.3$
- (±) generically perpendicular

$$\frac{<\Delta\epsilon>}{\epsilon_1} \propto \left(\frac{u}{c}\right) \qquad \text{in shock frame:} \\ \mathbf{u} = \mathbf{u}_{\mathbf{u}} - \mathbf{u}_{\mathbf{d}} > \mathbf{0}$$

$$\frac{<\Delta\epsilon>}{\epsilon_1} \sim \Gamma_r^2(1-\cos\theta) \to O(1)$$

(Gallant & Achterberg'99; Kirk+ 00, Achterberg+ 01)

(I.3) Shear particle acceleration

(e.g., Jokipii & Morfill '90; R. & Duffy '04, '06)

Particle acceleration in the presence of flow velocity gradients:

• E.g., (gradual) shear flow with frozen-in scattering centers:

$$\vec{u} = u_z(x) \ \vec{e_z}$$

Iike 2nd Fermi, stochastic process with average gain:

$$\frac{\langle \Delta \epsilon \rangle}{\epsilon_1} \propto \left(\frac{u}{c}\right)^2 = \left(\frac{\partial u_z}{\partial x}\right)^2 \lambda^2$$

with characteristic effective velocity:

$$u = \left(\frac{\partial u_z}{\partial x}\right)\lambda$$
 $\lambda = \text{mean free path}$

(±) needs energetic seed particles t_{acc}~ (ε/Δε) τ ~ Ι/λ
(±) "non-universal" index s=I+α
(+) distributed mechanism

(2) Reconnection

Significant energy release by change of magnetic field topology

- Possible in the presence of large magnetic field gradients
- ► associated with large current densities ("current sheets"): $4 \pi \mathbf{J} = c \nabla \mathbf{X} \mathbf{B}$
- electric field runs || to current density $\mathbf{E} = -\mathbf{v}_i/c \times \mathbf{B} + \mathbf{J}/\sigma$ (resistive MHD)
- particle acceleration along electric field no longer inhibited by m.f
 - acceleration rate: $d\epsilon/dt \approx e E c$
 - escape rate: (1/N) dN/dt \approx 1/T \approx c/r_g = c eB/E

→ particle energy spectrum: N(ε) \propto ε^{-s}, s \approx E/B \approx I

(+) can be fast in relativistic pair plasmas
(±) non-thermal distribution (1d vs 2d+ PIC)
(-) "power-law" index

(I) Ist order Fermi at "termination" shock?

(A) ultra-relativistic case $\Gamma_s \sim 10^6$ (low $\sigma <<1$)

- ▶ need high conversion (Poynting→kinetic) for $< R_t \sim 10^3 r_L$ (σ-problem!)
- ▶ perpendicular field orientation: $B_{||} = B_{||}$; $B_{\perp} \rightarrow 3 \Gamma_s B_{\perp}$ ' (proper frames)
 - ➡ particles are prevented from diffusing back upstream
 - no multiple crossings, no 1st order Fermi (shock-drift instead?)
 - Escape: significant scattering (Weibel-produced at low σ) with $\delta B/B > I$ model no pitch- but large-angle scattering, no "universal" index? (Pelletier+ 08; Baring' 09)

(B) Highly relativistic case Γ << 10⁶ (high σ at shock)

- \blacktriangleright for high σ , field fluctuations small cross-field transport suppressed
- Ist order Fermi unlikely, but if it operates
 - "weak" shock (low compression, downstream relativistic)
 - ➡ inefficient accelerator, deep spectra... (cf., Kirk & Duffy'99; Kirk'04)

(2) Reconnection in a striped pulsar wind?

(e.g., Petri & Lyubarksy'07)

- possible, if flow stays Poynting-dominated (slow dissipation before)
- termination shock: plasma compression may lead to forced annihilation
 - $relativistic pair plasma: downstream Lamor radius ~ sheet thickness > 2\pi r_L (full dissipation)$
 - \Rightarrow full dissipation requires $R_t/r_L \sim 10^3 > multiplicity$, and may not be achieved in LS 5039
 - downstream flow still relativistic
- can be fast: $t_{acc} \sim t_L$
- Problem:

(Jaroschek+04, Zenitani & Hoshino'07, but see Lyubarsky & Liverts'08)

- I d simulation: no evidence for non-thermal particle distributions
- •2d+ (no striped wind): power-law over limited (!) energy range
 s=1 (acceleration region/X-type neutral line)

s=3 (whole simulation box)

Note: annihilation of ordered field may make 1st order Fermi possible (requires ~full dissipation)

(3) Stochastic particle acceleration in post-shock flow

▶ possible re-acceleration of post-shock flow to $\Gamma \sim 100$ (Bogovalov+ 08)
▶ Hydro-limit: applies to $\sigma <<1$ flows, thus low Alfven speed $v_A/c \approx \sigma^{1/2}$ ➡ don't expect efficient 2nd order Fermi

but large velocity gradients: may have shear acceleration (R & Duffy'05)

- requires energetic seed particles
- from shock/thermalization etc?
- The radiative constraints may not apply: $t_{acc} \propto I/\lambda$
- no characteristic index?
- need to take relativistic effects into account

(4) Fermi acceleration in mildly relativistic jet?

▶ Ist order Fermi at internal shocks (u_s~ 0.1c):

 \blacksquare "non-relativistic", robust spectral index $s \approx 2$

- ➡ not efficient enough? $t_{acc} \sim t_L (c/u_s)^2$
- ➡ Escape (I): external shocks u_s~0.5 c
- Escape (II): shear acceleration:

Example: minimum shear acceleration timescale

- $t_{acc} \sim 10 r_g (0.5 c/u_j)^2$
- need high jet speeds
- may change spectral index (cf. R+ 07)

To conclude

_On extreme particle acceleration in Gamma-Ray Binaries (e.g., LS 5039)

- need "more" data X-ray periodicity in LS 5039?
- need detailed modelling (adiabatic losses, relativistic effects)
- may not simply see only one acceleration mechanism at work
- ▶ the classical 1st Fermi @ termination shock picture may not work

THANK YOU!

Fermi Acceleration Timescales

(e.g., Drury '83; Kirk '94; Duffy & Blundell '05; R.+ 07)

Ist order Fermi - standard shock (non-relativistic):

_with shock crossing time $t_c \sim \kappa / (u_s c)$, where $\kappa \sim \lambda c$

$$\mathbf{t}_{\rm acc} = \frac{\epsilon}{d\epsilon/dt} \simeq \frac{\epsilon}{\Delta\epsilon} \ t_c \sim \frac{\kappa}{u_s^2} \propto \frac{\lambda}{u_s^2}$$

2nd order Fermi (stochastic):

_with scattering time $\tau \sim \lambda/c$

$$\mathbf{t}_{\mathrm{acc}} = \frac{\epsilon}{d\epsilon/dt} \simeq \frac{\epsilon}{\Delta\epsilon} \ \tau \sim \left(\frac{c}{v_A}\right)^2 \left(\frac{\lambda}{c}\right) \propto \underbrace{\frac{\lambda}{v_A^2}}_{A}$$

shear (gradual, non-relativistic):

$$\mathbf{t}_{\mathrm{acc}} = \frac{\epsilon}{d\epsilon/dt} \simeq \frac{\epsilon}{\Delta\epsilon} \ \tau \sim \left(\frac{c}{\frac{\partial u_z}{\partial x}\lambda}\right)^2 \left(\frac{\lambda}{c}\right) \propto \frac{1}{\lambda}$$

Significance - (i) scales with synchrotron losses... - (ii) requires energetic seed particles