Massive Star Colliding Winds: Spectral and Variability Behaviour

Julian Pittard, University of Leeds, UK

Wind from O star

Hot shock front where winds meet

Wind from WR star

Heidelberg Workshop Variable Galactic Gamma-Ray Sources Dec 2nd 2010

Material blown back from the shock front forms dust downstream, as it trails behind the stars

Outline

UNIVERSITY OF LEEDS

INIMERSITY OF LEEDS

I. Overview of Dynamical Models and Studies

II. Recent Models of X-ray, Radio, Non-thermal Emission

CWBs are a very diverse population

INIMERSITY OF LEEDS

System	Orbital Period (d)	Separation (AU)	Density (cm ⁻³)	$\chi_{ m WR}$	χο
WR 139 (V444 Cyg)	4.2	0.2	$\sim 10^{10}$	<<1	?
WR 11 (γ^2 Vel)	78.5	0.81-1.59	~10 ⁹	~0.5-1	~250-500
WR 140	2899	~1.7-27.0	$\sim 10^9 - 10^7$	~2-50	~150-2000
Eta Car	2024	~1.5-30	$\sim 10^{12}$	<<1	~1-50
WR 147	>10 ⁵	>410	≤10 ⁴	>30	>1000

2 different regimes determined by characteristic cooling parameter,

$$\chi = \frac{t_{\rm cool}}{t_{\rm dyn}} \approx \frac{v_8^4 D_{12}}{\dot{M}_{-7}}$$

- i) $\chi < 1$ shocked wind highly radiative, $L_{\rm x} \propto \dot{M}v^2$, faster wind dominates X-ray emission
- ii) $\chi >> 1$ cooling mostly due to adiabatic expansion, $L_{\rm x} \propto \frac{\dot{M}^2}{v^{3.2}D}$, stronger wind dominates X-ray emission

Dynamical Instabilities

Stevens et al. (1992)

Early models

UNIVERSITY OF LEEDS

Stevens et al. (1992)

2D, axisymmetric, no orbital motion or radiative driving of winds

Radiative Driving Effects

Radiative Inhibition (Stevens & Pollock 1994)

- Pre-shock velocities always decrease
- M can increase or decrease (but reflection needs to be considered!)

Radiative Braking

(Owocki & Gayley 1997)

- More powerful than inhibition
- Highly non-linear to effective opacity of the wind

Cold plasma inside WCR

Wind speeds higher where radiative flux reinforced, relatively smaller in shadows behind stars

High inertia causes the dense shell to move to the trailing edge of the WCR

Behaviour of the WCR in an eccentric system

O6V + O6V, P=6.1d, dsep = 35-75 Rsun, e=0.36

Pittard (2009)

O6V + O6V, e=0.3, P=6.1d

3D AMR model of Eta Carinae

Parkin et al. (2010, accepted)

Clump destruction in adiabatic CWBs

RATERI TO YTHREENINI

UNIVERSITY OF LEEDS

Implications for particle accn?

Reconnection?

Stochastic accn?

11

Wednesday, 22 December 2010

NIMERSITY (OR TREEDS

Part II: Application of Models

Line Profile Variability: IR, Optical, UV

- Many WR binaries show signs of variability in excess emission on top of flat-topped emission lines
- Extra emission from wind material flowing along the shock cone and cooling

emission)

Hill et al. (2000)

- Fitting the observed profiles yields:
 - orbital inclination, i
 - shock half-opening angle, heta
 - shock skew, $\delta heta$

Wednesday, 22 December 2010

UNIVERSITY OF LEEDS

RV (mean radial velocity of the entire excess

20EEL 70 YTH2ALWINU

Two components, one thermal, one non-thermal

High resolution observations - MERLIN @ 5GHz:

50 mas = 77AU @ 650pc

WR+OB binary

NT emission => relativistic electrons + magnetic fields

NT emission consistent with windcollision position

Williams et al. (1997)

SOEEL TO YTHRRENUUU

Two components, one thermal, one non-thermal

High resolution observations - MERLIN @ 5GHz:

50 mas = 77AU @ 650pc

WR+OB binary

NT emission => relativistic electrons + magnetic fields

NT emission consistent with wind-collision position

Williams et al. (1997)

WR140 - VLBA obs

The radio light curve of WR140

iningeberegiære []

UNIVERSITY OF LEEDS

Previous Models of Radio Emission

Point source non-thermal emission, spherically symmetric winds -

 $S_{\nu}^{obs} = S_{\nu}^{thermal} + S_{\nu}^{nt} e^{-\tau_{\nu}^{ff}}$

A more complex model would account for the hole in the WR

wind carved out by the O wind

Williams et al. (1990)

Previous Models of Radio Emission

Early models of NT emission were simple Radio:

 Point source non-thermal emission, spherically symmetric winds –

 $S_v^{obs} = S_v^{thermal} + S_v^{nt} e^{-\tau_v^{ff}}$

- maintains analytic solutions

A more complex model would account for the hole in the WR wind carved out by the O wind White & Becker (1995) pointed out that even the O wind has significant opacity

Previous Models of Radio Emission

 Point source non-thermal emission, spherically symmetric winds –

 $S_{\nu}^{obs} = S_{\nu}^{thermal} + S_{\nu}^{nt} e^{-\tau_{\nu}^{ff}}$

- maintains analytic solutions

A more complex model would account for the hole in the WR wind carved out by the O wind White & Becker (1995) pointed out that even the O wind has significant opacity

More Recent Models

UNIVERSITY OF LEEDS

UNIMERSITY OF LEEDS

NT X-ray/γ-ray: Reimer et al. (2006)

More Recent Models

NT X-ray/γ-ray: Reimer et al. (2006). IC spectra

A Phenomenological Model

1.6 GHz emission map of synchrotron emission

Dougherty et al. (2003), Pittard et al. (2006)

Example Synthetic Emission Maps

UNIVERSITY OF LEEDS

With IC cooling

Spectral fits to WR140 spectra

Fits with the Razin effect causing the low freq. turnover

UNIMERSITY OF LEEDS

Wednesday, 22 December 2010

UNIMERSITY OF LEEDS

UNIVERSITY OF LEEDS

JNIMERSIITY OF LEEDS

UNIVERSITY OF LEEDS

JNIMERSIITY OF LEEDS

Possible to constrain models with VLBI obs – demands "good" observations

Gamma-ray absorption

UNIMERSITY OF LEEDS

Pair production in electric field of charged nuclei is negligible

High energy emission at phase 0.837

Model discrimination

SCEEL RO YTHRAUNINI

Fermi will be able to discriminate between models

Will place constraints on the spectral index and B-field

Flux at TeV energies in VERITAS band UNIVERSITY OF LEEDS

Fits at other phases?

UNIVERSITY OF LEEDS

Fits at other phases?

UNIVERSITY OF LEEDS

Wednesday, 22 December 2010

UNIVERSITY OF LEEDS

Match is now quite good....

Phase variation in model parameters

UNIVERSITY OF LEEDS

UNIVERSITY OF LEEDS

20EEL RO YTH2REMNUU

Colliding stellar winds in early-type binaries are important laboratories for **investigating high Mach Number shock physics** (ionization and temperature equilibration timescales) and particle acceleration

Highly eccentric systems – like WR140 – are particularly useful

Models of radio/X-ray/ γ -ray emission provide insight into particle acceleration efficiencies, and the strength of the B-field

Exciting period (Fermi, EVLA, CTA)

Expect to see large variations in the high energy NT emission with phase

Expect to see high energy NT emission from many more sources

May see NT radio emission even from short period (~10d) O+O binaries?