Theory of pulsars and pulsar winds

Jérôme Pétri

Observatoire Astronomique de Strasbourg Université de Strasbourg

Workshop Gamma-ray variability - Heidelberg - 2/12/2010

Jérôme Pétri (Université de Strasbourg)

Theory of pulsars and pulsar winds

< □ ▶

Heidelberg - 2/12/2010 1 / 25

Outline

What we believe pulsars are?

- basic facts
- orders of magnitude

Pulsar magnetosphere

- an artistic view
- phenomenological models
- nebula : the link to the pulsar

3 Pulsar winds

- wind structure
- the termination shock
- a central problem

4 Conclusions & Perspectives

The gamma-ray pulsar fauna

- before the Fermi era, 7 gamma-ray pulsars
- since Fermi, LAT discovered 16 new pulsars
- within 8 (9) are millisecond pulsars!
- more than 50 gamma-ray pulsars known today
 - \Rightarrow reasonable statistic to study their general properties

Their salient spectral gamma-ray features

- power-law spectrum
 - with exponential cut-off around 1-10 GeV
 - power-law index Γ between 1 and 2
- Iuminosity from 10²⁶ W to 10³¹ W
- flux of the order 10^{-8} photons cm⁻² s⁻¹ for $E_{\gamma} > 100$ MeV

Gamma-ray pulsars : light-curves sample

(Abdo et al. 2009)

UNIVERSITÉ DE STRASS

-

Gamma-ray pulsars : light-curves sample

(Abdo et al, 2009)

- \Rightarrow Double peak structure for ${\sim}75\%$ of them
- \Rightarrow Where does this emission come from?

Jérôme Pétri (Université de Strasbourg)

Theory of pulsars and pulsar winds

What we believe pulsars are?

- basic facts
- orders of magnitude

Pulsar magnetosphere

- an artistic view
- phenomenological models
- nebula : the link to the pulsar

Pulsar winds

- wind structure
- the termination shock
- a central problem

4 Conclusions & Perspectives

What is a pulsar?

● neutron star compact object ⇒ strong gravity effects

strongly magnetized

⇒ plasmas, QED effects (pair creation)

rotating

 \Rightarrow huge electric fields

What is a pulsar?

● neutron star compact object ⇒ strong gravity effects

strongly magnetized

 \Rightarrow plasmas, QED effects (pair creation)

rotating

 \Rightarrow huge electric fields

What is a pulsar?

- neutron star compact object ⇒ strong gravity effects
- strongly magnetized
 - \Rightarrow plasmas, QED effects (pair creation)
- rotating
 - \Rightarrow huge electric fields

What is a pulsar?

- neutron star compact object ⇒ strong gravity effects
- strongly magnetized
 - \Rightarrow plasmas, QED effects (pair creation)
- rotating
 - \Rightarrow huge electric fields

What is a pulsar?

- neutron star compact object ⇒ strong gravity effects
- strongly magnetized
 - \Rightarrow plasmas, QED effects (pair creation)
- rotating
 - \Rightarrow huge electric fields

Credit : A.K. Harding

What is a pulsar?

- neutron star compact object ⇒ strong gravity effects
- strongly magnetized
 - \Rightarrow plasmas, QED effects (pair creation)
- rotating
 - \Rightarrow huge electric fields

Credit : A.K. Harding

Some useful definitions

- obliquity α : angle between magnetic $\vec{\mu}$ and rotation $\vec{\Omega}$ axis
- aligned/perpendicular/oblique rotator : $\alpha = 0/90^{\circ}/any$ value
- light cylinder radius : surface on which a particle corotating with the neutron star reaches the speed of light $c : r_L = c/\Omega_*$
 - \Rightarrow transition from quasi-static to wave zone

From observations

- period *P* ∈ [1 *ms*, 1 *s*]
- period derivative $\dot{P} \in [10^{-18}, 10^{-15}]$
- spin-down losses well constrained

 $L_{\rm sp} = 4 \, \pi^2 \, I_* \, \dot{P} \, P^{-3} \approx 10^{24-31} \, W$

very different from black holes or accreting neutron stars

inferred magnetic field estimate by dipole radiation

$$B_* = 3.2 \times 10^{15} \sqrt{P \dot{P}} = 10^{5-8} T$$

huge induced electric field on crust

 $E_* = \Omega_* B_* R_* = 10^{13} V/m$

⇒ "instantaneous" acceleration to ultra-relativistic speed, $\gamma \gg 1$ ($\tau_{\rm acc} < 10^{-20}$ s)

What we believe pulsars are?

- basic facts
- orders of magnitude

Pulsar magnetosphere

- an artistic view
- phenomenological models
- nebula : the link to the pulsar

Pulsar winds

- wind structure
- the termination shock
- a central problem

4 Conclusions & Perspectives

The "standard model" of a pulsar

Jérôme Pétri (Université de Strasbourg)

The "standard model" of a pulsar

Basic underlying assumption : force-free magnetosphere

$$ho_{e}\,ec{E}+ec{j}\wedgeec{B}=ec{0}$$

magnetic energy density $\frac{B^2}{2\mu_0} \gg$ any other energy densities

- particle inertia neglected : zero mass limit
- no dissipation : ideal MHD

$$\vec{E} + \vec{v} \wedge \vec{B} = \vec{0}$$

- no pressure : cold plasma
- Two interpretations
 - charge-separated plasma \Rightarrow low particle density
 - MHD model \Rightarrow quasi-neutral plasma, high particle density

Who is right? PWN will give some clues

A problem

- \Rightarrow the total charge of the system is not conserved
- ⇒ total electric current does not vanish !

Polar cap

Main ingredients for the recipe

olar cap size

$$R_{
m pc} pprox R_* \sqrt{\frac{R_*}{r_L}} pprox 145 \left(\frac{P}{1 \, {
m s}}\right)^{-1/2} \, {
m m}$$

 potential drop between centre and border of a polar cap

Credit : Lorimer & Kramer

$$\Delta \phi = \frac{\Omega_*^2 B_* R_*^3}{c} \approx 1.3 \times 10^{13} \text{ V } \left(\frac{P}{1 \text{ s}}\right)^{-2} \left(\frac{B_*}{10^8 \text{ T}}\right) \left(\frac{R_*}{10 \text{ km}}\right)^3$$

particle flux from one polar cap

$$\dot{N}_{pc} = 2 \pi \frac{\varepsilon_0 \,\Omega_*^2 \,B_* \,R_*^3}{e} \approx 1.37 \times 10^{30} \,\mathrm{s}^{-1} \,\left(\frac{P}{1 \,\mathrm{s}}\right)^{-2} \,\left(\frac{B_*}{10^8 \,\mathrm{T}}\right) \,\left(\frac{R_*}{10 \,\mathrm{km}}\right)^3$$

Drawbacks

high gamma-ray opacity due to magnetic field

Sturrock (1971), Ruderman & Sutherland (1975)

UNIVERSITÉ DE STR

Polar cap

Main ingredients for the recipe

olar cap size

$$R_{
m pc} pprox R_* \sqrt{\frac{R_*}{r_L}} pprox 145 \left(\frac{P}{1 \, {
m s}}\right)^{-1/2} {
m m}$$

 potential drop between centre and border of a polar cap

Credit : Lorimer & Kramer

$$\Delta \phi = \frac{\Omega_*^2 B_* R_*^3}{c} \approx 1.3 \times 10^{13} \mathrm{V} \left(\frac{P}{1 \mathrm{s}}\right)^{-2} \left(\frac{B_*}{10^8 \mathrm{T}}\right) \left(\frac{R_*}{10 \mathrm{\,km}}\right)^3$$

particle flux from one polar cap

$$\dot{N}_{pc} = 2 \pi \frac{\varepsilon_0 \,\Omega_*^2 \, B_* \, R_*^3}{e} \approx 1.37 \times 10^{30} \, \mathrm{s}^{-1} \, \left(\frac{P}{1 \, \mathrm{s}}\right)^{-2} \, \left(\frac{B_*}{10^8 \, \mathrm{T}}\right) \, \left(\frac{R_*}{10 \, \mathrm{km}}\right)^3$$

Drawbacks

high gamma-ray opacity due to magnetic field

Sturrock (1971), Ruderman & Sutherland (1975)

 \Rightarrow particle outflow generating a poynting dominated wind

Jérôme Pétri (Université de Strasbourg)

Theory of pulsars and pulsar winds

UNIVERSITÉ DE STRAS

Outer gap

Another recipe

- vacuum gaps form along the null surface (where charge density vanishes $\rho_e = 0$)
- particles escape across the light-cylinder
- no replenishment from the polar cap because opposite sign of charge
- depletion regions built up accelerating electric field $E_{\parallel}
 eq 0$
- particle acceleration to high Lorentz factor limited by curvature radiation reaction

Cheng, Ho & Ruderman (1986)

Advantages

- sharp gamma-ray emission along separatrix
- geometry well constrained

Drawbacks

- keep $\rho_{\rm e} \neq \rho_{\rm GJ}$
- e^{\pm} pairs return to polar cap
 - \Rightarrow not really interesting for feeding the wind
 - \Rightarrow significant polar cap heating, thermal emission to high

Supernova remnant and nebula

• region I : the pulsar and its magnetosphere, source of relativistic e^{\pm} pairs

• region II : ultra-relativistic cold wind flowing to the nebula

region III : the nebula made of particles heated after crossing the MHD shock
 main source of radiation observed in radio, optical, X-ray and gamma-ray

Supernova remnant and nebula

- region I : the pulsar and its magnetosphere, source of relativistic e^{\pm} pairs
- region II : ultra-relativistic cold wind flowing to the nebula
- region III : the nebula made of particles heated after crossing the MHD shock
 main source of radiation observed in radio, optical, X-ray and gamma-ray

- region I : the pulsar and its magnetosphere, source of relativistic e[±] pairs
 region II : ultra-relativistic cold wind flowing to the nebula
- region III : the nebula made of particles heated after crossing the MHD shock
 ⇒ main source of radiation observed in radio, optical, X-ray and gamma-ray

What we believe pulsars are?

- basic facts
- orders of magnitude

Pulsar magnetosphere

- an artistic view
- phenomenological models
- nebula : the link to the pulsar

Bulsar winds

- wind structure
- the termination shock
- a central problem

4 Conclusions & Perspectives

Structure of the pulsar wind

Composition of the wind

- particle acceleration in the rotating magnetosphere
- made of e[±] pairs, maybe ions?

Dynamics of the wind

 still Poynting dominated with magnetization parameter

$$\sigma = \frac{\text{Poynting flux}}{\text{particle enthalpy flux}} = \frac{B^2}{\mu_0 \, \Gamma_v \, n \, m \, c^2} \gg T$$

- Lorentz factor Γ_v increases until it reaches the fast magnetosonic point
- almost ballistic expansion with $\Gamma_{\nu} \gg 1$, high lorentz factor $\Gamma_{\nu} \approx 10^{2-6}$
- oblique rotator implies magnetically striped wind
- dominant azimuthal magnetic field
 - \Rightarrow toroidal field alternates direction
 - \Rightarrow current sheets, anisotropic wind

Two distinct flows

- pulsar wind = ultra-relativistic supermagnetosonic flow
- nebula = slowly expanding plasma from $c/\sqrt{3}$ down to few 1000 km/s

 \Rightarrow transition through a termination shock confining the pulsar wind

Location of the termination shock balance between ram pressure of the wind and pressure in the nebula

$$\left| R_{\rm TS} = \sqrt{\frac{L_{\rm sd}}{4 \, \pi \, c \, P_{\rm neb}}} \right| \approx 0.1 - 1 \, {\rm AU}(B \approx 10^{-7} - 10^{-5} \, {\rm T})$$

The termination shock is boundary between

- unshocked wind : cold magnetized upstream plasma
 ⇒ very faint, hardly detectable
- shocked wind : hot (almost) unmagnetized downstream plasma
 ⇒ bright synchrotron emission
- some variability seen as wisps

Unshocked wind

- gamma-rays by inverse Compton emission
 - CMB photons
 - synchrotron self-Compton mechanism
 - thermal X-rays from neutron star surface
 - optical-UV from companion star (in binaries)
- pulsation expected in MeV/GeV range should be detected if outside but close to the light-cylinder

$$r \lesssim \Gamma^2 r_L$$

Kirk et al (2002), Pétri (2009,2010)

- in optical, synchrotron polarization Shocked wind
 - TeV emission from the shocked wind
 - \Rightarrow no pulsation expected at these energies (PSR B1259-63)

Kirk et al. (1999)

Description of the system

in the vicinity of the pulsar $r \approx r_{i}$	in the nebula, $r \approx R_{TS}$
from pulsar/wind theory	from PWNe theory
	and observations
$\sigma pprox 10^4$ and $\Gamma_{ m v} pprox 10^2$	$\sigma \ll$ 1 and $\Gamma_{\nu} \approx 10^{3-6}$
an intense magnetic field	a weak magnetic field
low kinetic energy of the particles	ultra-relativistic particles
	(synchrotron radiation)
⇒ dvnamics dominated by	

the electromagnetic field the particles

A fundamental problem

- How to convert the electromagnetic energy into kinetic energy for the particles?
- How to do the transition between the neutron star, $\sigma \gg 1$, to the nebula, $\sigma \ll 1$?

Idea

Magnetic energy dissipation/annihilation/reconnection at the termination shock of a striped wind.

Lyubarsky & Kirk (2002), Pétri & Lyubarsky (2007)

A well-known pulsar/nebula association : the Crab

- emission mechanism
 = synchrotron radiation
- relativistic particles
- ordered magnetic field
 ⇒ polarization degree high
- Iow equatorial magnetization
- termination shock at

$$R_{\rm TS} = 10^8 r_L \approx 0.1 \ {
m pc}$$

 $B pprox 10^{-8} \ {
m T}$

particle injection rate

$$\dot{N}_{\rm pc} \approx 10^{40} \ {\rm s}^{-1}$$

pair multiplicity $\kappa \approx 10^4$ \Rightarrow favors MHD against charge-separated model

Aumont at al. (2010)

- toroidal loops, main region of X-ray emission
- innermost ring suspected to be the termination shock
- jet/counter-jet structure close to neutron star surface <
 R_{TS}
- not explained by magnetic collimation
 ⇒ beaming effect bright/faint jet
- but by anisotropic energy flux within the wind (cf RMHD simulations)

The Crab pulsar in X-rays

PWNe simulations : 2D axisymmetric RMHD

Several groups but same inputs

- relativistic MHD wind
- anisotropic Poynting energy flux (maximum at the equator)
- low magnetization in equator (stripe dissipation)

Consequences

- at higher latitudes still significant B ⇒ collimation by hoop stress
- termination shock closer to neutron at the poles than at the equator

Komissarov & Lyubarsky (2003)

Jérôme Pétri (Université de Strasbourg)

Theory of pulsars and pulsar winds

What we believe pulsars are?

- basic facts
- orders of magnitude

Pulsar magnetosphere

- an artistic view
- phenomenological models
- nebula : the link to the pulsar

Pulsar winds

- wind structure
- the termination shock
- a central problem

Conclusions & Perspectives

Conclusions

Magnetosphere

- strongly magnetized rotating neutron star
- no obvious observational constrains about geometry and particle distribution
- polar cap/outer gap hard to reconcile with radio/gamma-ray observations
- lake of self-consistent global (non MHD) solution for general oblique rotator
- no simulation of particle acceleration on global scale

In the wind

- high Lorentz factor $\Gamma_{\nu} = 10^{2-6}$
- radial expansion with acceleration to the FMS wave speed
- anisotropic geometry
 - stripes in the equatorial region (low σ but most of energy flux)
 - polar region collimated by magnetic hoop stress
- particles accelerated at termination shock
 => non thermal emission within the nebula
- σ -paradox not solved
- composition of the wind, electrons/positrons and ions(?)

Link between outer magnetosphere and base of the wind? crucial because = probable site where gamma-rays come from

UNIVERSITÉ DE M

ANNEXES

Jérôme Pétri (Université de Strasbourg)

Neutron star masses statistics

Lattimer & Prakash

Jérôme Pétri (Université de Strasbourg)