

Jets in high-mass microquasars

Manel Perucho-Pla

Grup d'Astrofísica Relativista - Universitat de València Variable Galactic Gamma-Ray Sources - Heidelberg, 01/12/10

Outline

• Introduction

- Jets in microquasars
- Numerical simulations of relativistic jets
- Simulations of jets in high-mass microquasars:
 - 1. Wind-jet interaction in massive X-ray binaries
 - 2D
 - 3D
 - What do we learn
 - 2. Long term evolution of microquasar jets
- Conclusions

Jets in microquasars

- ~15 sources with detected radiojets (microquasars) in the galaxy.
 - < 10% of total X-ray binaries (Massi '05, Ribó '05).
- Are all radio-emitting X-ray binaries microquasars? (Fender '04)
 - 43 REXBs: 8 HMXBs and 35 LMXBs (Ribó 2005).
- To which extent is this picture (on the left) exact?
 - Accretion process.
 - Continuous vs periodic ejection?
 - Ambient medium.
 - Strong winds, inhomogeneities...
- Numerical simulations of microquasar jets needed to get a better picture!
 - Morphology and dynamics, locations of particle acceleration, variability,..
 - Peter & Eichler '95 (collimation).

Numerical simulations of relativistic jets

Relativistic hydrodynamics: SRHD equations

$$\begin{aligned} &\frac{\partial D}{\partial t} + \nabla \cdot (D\mathbf{v}) = 0 \quad (\text{mass conservation}) \\ &\frac{\partial \mathbf{S}}{\partial t} + \nabla \cdot (\mathbf{S} \otimes \mathbf{v} + p\mathbf{I}) = 0 \quad (\text{momentum conservation}) \\ &\frac{\partial \tau}{\partial t} + \nabla \cdot (\mathbf{S} - D\mathbf{v}) = 0 \quad (\text{energy conservation}) \end{aligned}$$

STATE VECTOR

$\mathbf{U} = (D, S^1, S^2, S^3, \tau)$

FLUX VECTORS

$$\mathbf{F}^i = (Dv^i, S^1v^i + \delta^{1i}, S^2v^i + \delta^{2i}, S^3v^i + \delta^{3i}, S^i - Dv^i)$$

DEFINITIONS

 $D = \rho W$: relativistic rest-mass density.

 $\mathbf{S} = \rho h W^2 \mathbf{v}$: relativistic momentum density.

 $\tau = \rho h W^2 c^2 - p - \rho W c^2$: relativistic energy density.

v: fluid flow velocity.

 $W = 1/\sqrt{1 - \mathbf{v}^2/c^2}$: flow Lorentz factor.

FLUID REST FRAME QUANTITIES

ρ: proper rest-mass density.

 $h=1+\epsilon/c^2+p/
ho c^2$: specific enthalpy.

ε: specific internal energy.

p: pressure.

RELATIVISTIC EFFECTS

 $h \ge 1 \ (\varepsilon \ge c^2)$ $W \ge 1 \ (v \to c)$

Numerical simulations of relativistic jets

- Some things we learned from simulations of extragalactic jets:
 - Jet morphology and dynamics largely governed by the interaction with the external medium (Rayburn 1977, Norman et al. 1982, van Putten 1993, Martí et al. 1994, 1995, 1997, Duncan & Hughes 1994):
 - bow-shock, cocoon (backflow), hot-spots...
 - Stability of relativistic jets (e.g., Hardee & Norman 1988, Rosen et al. 1999, Perucho et al. 2005, 2007, 2010).
 - Long-term evolution of extragalactic jets (e.g., Scheck et al. 2002, Perucho & Martí 2007, Rossi et al. 2008, Meliani et al. 2008).
 - Influence of jet composition, ambient medium...
 - <u>3D simulations</u> (Nishikawa et al. 1997, 1998; Aloy et al. 1999; Hughes et al. 2002, Perucho et al. 2006, Rossi et al. 2008 ...) :
 - helical instabilities, long term evolution...

Numerical simulations of relativistic jets

- Some things we learned from simulations of extragalactic jets:
 - RMHD simulations (Nishikawa et al. 1997, 1998; Komissarov 1999; Leismann et al. 2005, Keppens et al. 2008, Mizuno et al. 2007, Komissarov et al. 2007).
 - Morphology, influence of poloidal and toroidal components on the dynamics...
 - Jet acceleration.
 - Link between simulations and observation (Komissarov & Falle 1996, 1997, Gomez et al 1996, 1997, Agudo et al. 2001, Aloy et al. 2003, Roca-Sogorb et al. 2008, Mimica et al. 2008, Perucho et al. 2008):
 - Jet structure and morphology in the parsec-scales.
 - Trailing components, pop-up components, recollimation shocks...
 - Jet formation and collimation mechanisms (e.g., Koide et al. 1998, 2000, Komissarov 2001, McKinney 2005, 2006, Fendt 2006)

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: 2D simulations

2D simulations: Perucho & Bosch-Ramon 2008

powerful jet (3 1037 erg/s)

²⁰x300 Rj +extended grid

320x2400 cells

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: 3D simulations Numerical Setup

- Ratpenat is a 3D RHD code that combines MPI and OMP parallelization.
- The simulations have been performed in Mare Nostrum (Barcelona Supercomputing Centre):
 - Distributed in nodes with 4 processors each.
- 32 nodes (128 processors).
 - Total of <u>320x320x1280</u> cells.
 - Numerical box: 40x40x10 R_i per node.
 - The jet is divided in slices along the axis.
 - Extended radial region makes it (100x100x10 R_i per node).
 - Resolution: 4 cells per jet radius at injection in the central region plus total of 80 cells in the extended region (320x320x40 cells per node).
 - The effective resolution is 16 cells per jet radius, because the jet expands very fast from injection.

Perucho, Bosch-Ramon & Khangulyan 2010

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: 3D simulations Input data

	WIND	JET 1	JET 2
Power (erg/s)		10 ³⁵	10 ³⁷
Velocity (cm/s)	2 10 ⁸	1.7 10 ¹⁰	1.7 10 ¹⁰
Density (g-cm ⁻³)	2.8 10 ⁻¹⁵	0.088 ρ _w	8.8 ρ _w
Temperature (K)	104	10 ¹⁰	10 ¹⁰
Mach number	220	16.6	16.6
Pressure (dyn-cm ⁻²)	1.5 10 ⁻³	7.1	7.1 10 ³

Perucho, Bosch-Ramon & Khangulyan 2010

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: 3D simulations Hypotheses

- Hydrodynamic-cold flow particle dominated.
 - reasonable at certain distances to the compact object ($B_{\parallel} \alpha r^2$) and taking dissipation into account. Excepting strong shocks.
 - $T_j << m_p c^2/k_B$
- stellar wind from a massive O-type star (dM/d t = 10^{-6} M_{sun} yr⁻¹).
 - continuous in the simulation time-scales (100 -1000s).
 - compact object at the same orbital position during the simulation time-scales (100-1000s vs T > 100,000 s).
 - homogeneous (constant density up to R_{orb}).

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: 3D simulations Jet 1 t = 977 s

Wind-jet interaction in massive X-ray binaries: 3D simulations

Jet 1 *t* = 977 s Log. Density L 1×10¹¹ 1×10¹¹ 5×10¹⁰ 5×10¹⁰ z B z (B) 1.84e-14 0 -5×10¹⁰ -5×10^{10} -1×10¹¹ -1×10^{11} -2.4x10¹¹ 2.4x10¹¹ -2.4x10¹¹ 2.4x10¹¹ 0 0 1.20e-16 \times (R_i) \times (R_i) L_2 1×10^{11} 1×10^{11} 5×10^{10} 5×10^{10} z (B) £ 7.82e-19 0 N -5×10¹⁰ -5×10¹⁰ -1×10^{11} -1×10¹¹ -2.4x10¹¹ 2.4x10¹¹ -2.4x10¹¹ 2.4x10¹¹ 0 0 \times (R_i) \times (R_i)

Perucho, Bosch-Ramon & Khangulyan 2010

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: 3D simulations Jet 2 t = 192 s

Wind-jet interaction in massive X-ray binaries: 3D simulations

t = 192 s Jet 2 Log. Density 1×10¹¹ 1×10^{11} 5×10^{10} 5×10¹⁰ z (B z (B) 2.63e-14 0 -5×10¹⁰ -5×10^{10} -1×10^{11} -1×10^{11} -2.4x10¹¹ $-2.4x10^{11}$ 2.4x10¹¹ 2.4x10¹¹ 0 0 1.74e-16 \times (R_i) \times (R_i) L_2 1×10¹¹ 1×10^{11} 5×10¹⁰ 5×10¹⁰ z (B) Ê 1.15e-18 N -5×10^{10} -5×10^{10} -1×10^{11} -1×10¹¹ -2.4x10¹¹ 2.4x10¹¹ -2.4x10¹¹ 2.4x10¹¹ 0 0 \times (R_i) \times (R_i)

Perucho, Bosch-Ramon & Khangulyan 2010

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: What do we learn

- There are strong interactions in the evolution of jets in massive binaries:
 - Recollimation shocks within the cocoon, but also within the wind region. These shocks are generated in the binary region if (see Perucho & Bosch-Ramon 2008):

$$\begin{array}{ll} \mbox{Jet-cocoon interaction} & \mbox{Jet-wind interaction} \\ T_{j,0} < 3 \times 10^{14} \cdot \left(\frac{L_j}{10^{36} \, {\rm erg} \, {\rm s}^{-1}}\right) \cdot \left(\frac{3 \times 10^9 \, {\rm cm} \, {\rm s}^{-1}}{V_{\rm bs}}\right) \cdot & \\ & \left(\frac{3 \times 10^{11} \, {\rm cm}}{R_{\rm c}}\right)^2 \cdot \left(\frac{10^{-15} \, {\rm g} \, {\rm cm}^{-3}}{\rho_{\rm j,0}}\right) {\rm K}, \end{array} \\ T_{j,0} < 3 \times 10^{13} \cdot \left(\frac{\rho_{\rm w}}{2.8 \times 10^{-15} \, {\rm g} \, {\rm cm}^{-3}}\right) \cdot \left(\frac{V_{\rm w}}{2 \times 10^8 \, {\rm cm} \, {\rm s}^{-1}}\right)^2 \cdot \\ & \left(\frac{10^{-15} \, {\rm g} \, {\rm cm}^{-3}}{\rho_{\rm j,0}}\right) {\rm K}, \end{array}$$

Fulfilled for supersonic, mildly relativistic jets.

- These strong shocks are candidate locations for particle acceleration and high-energy emission.
 - the emission of gamma-rays produced at such a site reduces the absorption by interaction with stellar photons.

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: What do we learn

- The position of the recollimation shock depends on the cocoon pressure (Falle 1991): $z_{\rm s} \propto P_{\rm c}^{-1/2}$,
 - From Scheck et al. (2002) and Perucho & Martí (2007): $v_{
 m bs} \propto t^{lpha}$

 $\begin{array}{ll} P_{\rm c} \propto t^{-1-\alpha/2} & z_{\rm s} \propto t^{1/2+\alpha/4} & \mbox{for a homogeneous ambient} \\ P_{\rm c} \propto t^{-2} & z_{\rm s} \propto t & \mbox{for } \rho_{\rm a} \propto z^{-2} \end{array}$

• We can compute the time (t_3) at which the recollimation shock will reach $z = 2 \times 10^{12}$ cm

- With
$$z_{\rm s}(t_2) = 1.1 \times 10^{12} \text{ cm}$$
 and $t_2 \simeq 210 \text{ s}$
for $\rho_{\rm a} \propto \bar{z^{-2}}$: $t_3 \simeq 2 t_2 \simeq 400 \text{ s}$

• We compare this time with the time at which the recollimation shock will be determined by the pressure of the shocked wind: $P_{\rm w} \sim 10^2 {\rm ~erg~cm^{-3}}$

- With $P_{\rm c} \simeq 10^3 \, {\rm erg \, cm^{-3}}$ at $t_2 = 210 \, {\rm s}$

$$t \simeq \sqrt{P_{\rm c,0}/P_{\rm w}} t_2 \simeq 3 t_2 \quad \thickapprox \quad 2 t_2$$

Wind-jet interaction in massive X-ray binaries: What do we learn

- Instabilities develop in the outer layers and propagate to the whole jet (in the form of surface or first body helical modes) after the strong recollimation shock: This can destroy the jet.
 - Could be the case in the TeV X-ray binary LS 5039 (see Moldón et al. 2008 arXiv:0812.0988 and Ribó et al. 2008).
 - Betterobservational resolution could show the effect of the wind in the jet.
- Only powerful jets (P_j > 10³⁷ erg/s) in massive binaries may be able to propagate collimated out of the binary region.
- Frustrated jets may not be observed in radio at large distances.
- The luminosity function derived by Grimm et al (2003) predicts 3 HMXBs with $L_x=10^{35}$ erg/s.
 - Following Fender et al. (2005), such HMXB with a 10 M_{sun} Black Hole, the jet could have a kinetic power between 10³⁵ and 10³⁸ erg/s.
 - We deduce that there is room for a few (~10) such sources, with $L_X \le 10^{35}$ erg/s, in our Galaxy.

Simulations of jets in high-mass microquasars Long-term evolution of microquasar jets

• Bordas, Bosch-Ramon, Paredes, MP 2009. SEE TALK BY P. BORDAS.

Long-term evolution of microquasar jets

• Bordas, Bosch-Ramon, Paredes, MP 2009. SEE TALK BY P. BORDAS.

Long-term evolution of microquasar jets

Bosch-Ramon, Perucho & Bordas, in preparation

3 scenarios (P_k = 3.e36 erg/s): -Case 1: young MQ (t<1.e5 yrs), inside the hot SNR.

-Case 2: older MQ (t~1.e5 yrs), the jet has left the SNR and propagates in the wind-wind/ISM shock-ISM

-Case 3: Similar to case 2 (t~1.e6 yrs), with a bow-shock generated by the propagation of the binary through the ISM. The shocked wind impacts the jet from the side. Slab jet.

Long-term evolution of microquasar jets

Long-term evolution of microquasar jets

Long-term evolution of microquasar jets

-Case 2: older MQ (t~1.e5 yrs), the SNR has dissipated and the jet propagates in the wind-wind/ISM shock-ISM

t=9.8e3 yrs

Long-term evolution of microquasar jets

-Case 2: older MQ (t~1.e5 yrs), the jet has left the SNR and propagates in the wind-wind/ISM shock-ISM

t=9.8e3 yrs

Long-term evolution of microquasar jets

Case 3: Similar to case 2 (t~1.e6 yrs), with a bow-shock generated by the propagation of the O-star through the ISM. The shocked wind impacts the jet from the side. Slab jet.

Long-term evolution of microquasar jets

Case 3: Similar to case 2 (t~1.e6 yrs), with a bow-shock generated by the propagation of the O-star through the ISM. The shocked wind impacts the jet from the side. Slab jet.

Long-term evolution of microquasar jets

Conclusions

- Simple numerical simulations give important information about:
 - Sites of high-energy emission.
 - Jet stability and propagation.
 - Hints for the lost jets in REXBs and radio-quite XBs.
 - Long-term evolution and interaction with the inhomogeneous ambient.
- Further work:
 - Realistic scenarios:
 - expansion of the jet in decreasing density wind at larger scales + growing instabilities (now calculating for $P_i = 10^{37}$ erg/s). DONE.
 - Direct impact of the wind onto the jet when the head of the jet is far.
 - Effect of non-homogeneous wind. ONGOING.
 - Improved physics:
 - RMHD simulations, eos...

Simulations of jets in high-mass microquasars Wind-jet interaction in massive X-ray binaries: 3D simulations Inhomogeneous wind

4×10¹²

 4×10^{12}

1.55e-15

1.84e-17

-5×101

-5×10¹¹

5×10¹¹

paral. (cm)

