The Properties of Winds from Massive Stars

Stan Owocki Bartol Research Institute University of Delaware

Collaborators: Atsuo Okazaki Gustavo Romero David Cohen Asif ud-Doula Penn State **Rich Townsend U. Wisconsin** & many more...

Sapporo, Japan IAR, Argentina Swarthmore Coll.

Key properties of massive-star winds

- $M_{dot} \sim 10^{-10} 10^{-4} M_{sun}/yr;$
 - V_{inf} ~ 3 V_{esc} ~ 1000-3000 km/s
- sometimes (e.g. Be stars) rotationally distorted
 polar wind & equatorial "decretion disk"
- highly clumped & moderately "porous"
 filling factor f_{vol} ~ 0.1
 - mfp ~ "porosity length" h ~ ℓ/f_{vol} ~ 1-10% R*

Radiative force vs. gravity

Driving by Line-Opacity

Optically thin

Optically thick

CAK model of steady-state wind

 $vv' \approx -\frac{GM(1-\Gamma)}{r^2} + \frac{\overline{Q}L}{r^2} \left(\frac{r^2vv'}{\dot{M}\overline{Q}}\right)^{\alpha}$ (CAK ensemble of thick & thin lines

Equation of motion:

inertia \approx gravity \approx CAK line-force

GCAK \approx gravity Mass loss rate $\dot{M} \approx \frac{L}{c^2} \left(\frac{\overline{Q}\Gamma}{1-\Gamma}\right)^{\frac{1}{\alpha}-1}$ inertia \approx gravity Velocity law $V(r) \approx V_{\infty} (1 - R_* / r)^{\beta} \qquad \beta \approx 0.8$ $\sim V_{esc}$

Wind-Momentum Luminosity law

$$\dot{M} \mathrm{V}_{\infty} \propto L^{\frac{1}{\alpha}}$$

 $\alpha \approx 0.6$

How is such a wind affected by (rapid) stellar rotation?

Gravity Darkening

increasing stellar rotation ·

Effect of gravity darkening on line-driven mass flux

Recall:

$$\dot{m}(\theta) \sim \frac{F(\theta)^{1/\alpha}}{g_{eff}(\theta)^{1/\alpha-1}} \sim \frac{F^2(\theta)}{g_{eff}(\theta)} \qquad \text{e.g., for} \\ \alpha = 1/2$$

w/o gravity darkening, if $F(\theta)$ =const.

$$\dot{m}(\theta) \sim \frac{1}{g_{eff}(\theta)}$$

 $\dot{m}(\theta) \sim F(\theta)$

highest at equator

w/ gravity darkening, if $F(\theta) \sim g_{eff}(\theta)$ highest at **pole**

Effect of rotation on flow speed

$$V_{\infty}(\theta) \sim V_{eff}(\theta) \sim \sqrt{g_{eff}(\theta)}$$

$$g_{eff}(\theta) \sim 1 - \omega^2 Sin^2 \theta$$

 $\omega \equiv \Omega / \Omega_{crit}$

Eta Carinae

Be stars

- Hot, bright, & rapidly rotating stars of mass ~ 3-10 Msun
- The "e" stands for emission lines in the star's spectrum

• Indicates a disk of gas orbits the star.

3 components of Be star circumstellar gas

gravity brightened poles drive denser polar wind

B1259-63 = misaligned Be-pulsar system.

MiMeS

Magnetism in Massive Stars

P.I.: Gregg A. Wade, Royal Military College 50+ Co-Is, 2008-2012, CFHT Allocation: 640 hours

http://www.physics.queensu.ca/~wade/mimes/ MiMeS___Magnetism_in_Massive_Stars.html

Rigid Field - Hydro Model

σ Ori E

EM +B-field

photometry

Rigidly Rotating Magnetosphere

 $B_* \sim 10^4 G$ => $\eta_* \sim 10^6 !$ tilt ~ 55°

Wednesday, December 1, 2010

Wednesday, December 1, 2010

Back to 1D models of non-magnetic winds & "Line-Deshadowing" Instability

- Leads to:
 - -clumping
 - -porosity
 - soft X-ray emission

Line-Deshadowing Instability

Time snapshot of wind structure vs. radius

Wednesday, December 1, 2010

Clumping vs. radius

Wednesday, December 1, 2010

Shell-shell collisions seeded by turbulence at the base of the wind flow

Feldmeier, et al. 1997

T~ 5-10 MK => 0.5-1 keV X-rays

Wednesday, December 1, 2010

Time

Cool-star Capella: coronal X-rays lines (narrow)

ζPup high-mass Ne X Ly α broad, skewed, blue shifted

Capella low mass unresolved

Wednesday, December 1, 2010

Wind Profile Model

Inferring ZPup M_{dot} from X-ray lines

 $M \sim \sqrt{f_{cl}} \to f_{cl} \approx 6$

Resulting small-scale density clumping in 2-D simulations

Dessart & Owocki 2003, A&A, 406, L1

Porosity

- Same amount of material
- More light gets through
- Less interaction between matter and light

Porous opacity from optically thick clumps

Porosity length = mfp

$mfp = 1/\ell^{2} n_{c}$ = L^{3}/ℓ^{2} = ℓ/f_{vol} = h = porosity length

clump size $\ell = 0.05r$

Porous envelopes h=0.5r

Porosity length h=r $h \equiv \ell / f_{vol}$

vol. fill factor $f_{vol} \equiv (\ell / L)^3$ $= 1/f_{c1}$ h=2r

Wednesday, December 1, 2010

Porosity's effect on X-ray line profiles

X-rays from Colliding Wind Binaries

Stevens et al. 1992

Wednesday, December 1, 2010

3D SPH sim of CWB in eta Car

http://www.bartol.udel.edu/~owocki/xfr/eta_car_r10-full.mov

Wednesday, December 1, 2010

3D SPH sim of η Car CWB

3D SPH sim of η Car CWB

HMXRB X-ray light curve

4U 1700-37 HD 153919

Haberl et al. 1989

Wednesday, December 1, 2010

HMXRB light curve fluctuations

X-ray absorption in smooth vs. porous wind

Porosity Model for how wind clumps perturb light curve mass column

Wednesday, December 1, 2010

γ-ray emission in HMXRB with clumpy wind

γ -ray fluctuation from wind clumps

 ∞ $L_{\gamma} = L_{j}\sigma \int n(z)\,dz$

 $\frac{\#}{\text{clumps}} \Delta N_c = \frac{\Delta z}{h} \text{ mfp}$

 $\delta L_{\gamma} \sim \sqrt{N_c}$

$$\frac{\delta L_{\gamma}}{L_{\gamma}} = \frac{\sqrt{\int_{0}^{\infty} n^{2} h \, dz}}{\int_{0}^{\infty} n \, dz} = \sqrt{\frac{h}{\pi a}}$$

Typical example

narrow jet with: l=h/10=0.03a

$$\frac{\delta L_{\gamma}}{L_{\gamma}} \approx \sqrt{\frac{h}{\pi a}} \approx 0.1 = 10\%$$

Modeling TeV gamma-rays from LS 5039: An Active OB Star at the Extreme

Stanley P. Owocki (BRI, Univ. Delaware) Atsuo T. Okazaki (Hokkai-Gakuen Univ.) Gustavo E. Romero (U. Nacional La Plata)

talk at Paris IAUS 272 July 2010

Bondi-Hoyle-Lyttleton (BHL) Accretion

Bondi radius $b = \frac{GM_{BH}}{V_{el}^2/2}$

BHL accretion rate

 $\dot{M}_{BHL} = \rho V_{rel} \pi b^2 = \frac{G^2 M_{BH}^2 \dot{M}_w}{V_w^3 V d^2}$

Orbital variation of SPH accretion closely follows Bond-Hoyle-Lyttleton rate

Wednesday, December 1, 2010

MicroQuasar Model

γ-γAbsorption

LS 5039 y-ray light curves

E=0.1-10 GeV: below threshold for γ -- γ with stellar UV NO ABS E > 1 TeV: **above** threshold for $\gamma - \gamma$ with stellar UV $\gamma - \gamma$ ABS

HESS photon index.

Need to include Photon Cascade

Summary

- Winds unstable => clumps, soft X-rays
- Colliding Winds in Binaries => harder X-rays
- Be CSM = polar wind + eq. VDD + ablation
- Porosity length h=size/f_{vol} key clump parameter
- In HMXRB => fluctuations in X-ray light curve
- Microquasar jets => γ -rays w/ fluct. ~ Sqrt[h/a]
- MQ model fits Fermi & HESS 1.c. for LS5039
- But fitting spectrum requires photon cascade