Simulations of accretion in binaries formed by an OB star plus a compact object **Atsuo Okazaki** (Hokkai-Gakuen Univ., Japan) in collaboration with Stan Owocki (BRI, USA) and Gustavo Romero (IAR, Argentina) in accretion sims and many more in B1259-63 sims

Massive binaries with an accreting compact object

High Mass X-ray Binaries Supergiant X-ray binaries (including supergiant fast X-ray transients) a blue supergiant + a NS or BH Be/X-ray binaries a Be star + a NS or BH **Majority of total population**

TeV binaries

• All are massive binaries • 4 (including 1 candidate) show periodic/ persistent TeV emisison Among these 4 systems > 1 is O star + compact object (LS 5039) > 3 have a Be star (B1259-63, LS I+61 303, HESS J0632+057)

Mass transfer mode in massive binaries with an accreting compact object

Donor	Mass transfer
O stars, B stars	stellar wind
blue supergiants	<i>stellar wind</i> or Roche-lobe overflow
Be stars	overflow from Be disk

Supergiant X-ray binaries Strong wind high energy emission accretion

Be/X-ray binaries

Be disk

NS or BH

overflow from Be disk

high energy emission

Circumstellar disks around Be stars (Porter & Rivinius 2003 for a review) **Be stars** Non-supergiant B-type stars with Balmer lines in emission ("e" is for emission). • Two circumstellar components: a polar wind and an equatorial disk. Rapid rotators (rotation close to critical).

Circumstellar disks around Be stars (Porter & Rivinius 2003 for a review) **Be disks** Viscous decretion disks (Lee et al. 1991) Keplerian (radial velocity <<1 km/s) outward drift by viscosity mass (See Carciofi & Bjorkman ejection 2006 for disk structure) from star

Equatorial disk ≠ Equatorial wind!
Be disk (viscous decretion disk) is Keplerian.
Outflow velocity is so low that only upper limit (1km/s) is obtained observationally.

Stop using the equatorial disk model of Waters (1986). It's obsolete for >10yr!

Constructing 3-D dynamical models is essential to understand:

- Nature of the system
 A colliding wind binary or a microquasar?
- Details of the interaction
 - Accretion rate etc. in accreting systems
 Structure and dynamics of interaction region in colliding wind binaries

3-D hydodynamical simulations of TeV gamma-ray binaries

System	Model
B 1259-63: B2Ve(?) + NS; P _{orb} = 3.4 yr, e = 0.87	CWB
	Poster
LS 5039: O6.5V + NS or BH; P _{orb} = 3.9 d, e =	CWB or MQ?
0.24	This talk
LS I +61 303: BOVe + NS or BH; P _{orb} = 26.5 d, e=	CWB or MQ?
0.24	This talk

Numerical Modeling of Interactions in Massive Binaries with SPH

SPH (Smoothed Particle Hydrodynamics)

A particle method that divides fluid into a set of discrete "fluid elements" (=particle)

Some Features of the SPH Method

Automatic adaptation of spatial resolution.
Can handle various configurations easily.
Derivatives apply only to the kernel.
Not a best method for problems with strong shocks.

Simulations of stellar wind accretion: LS 5039 (Owocki, Okazaki, Romero 2010, arXiv:1010.0355)

Numerical model

 Isothermal O-star wind w/ beta=1 velocity law:

 $v_{\rm w} = v_{\infty} (1 - R / r)^{\beta}$

- Wind particles ejected in a narrow cone toward BH.
- Fix BH accretion radius << Bondi-Hoyle accretion radius at periastron.

Bondi-Hoyle-Lyttleton (BHL) Accretion

rel

Bondi radius

BHL accretion rate

$$\dot{M}_{\rm BHL} = \rho V_{\rm rel} \pi b^2$$
$$G^2 M^2 \dot{M}$$

 $V^3 V d^2$

(Owocki+ 2010)

b

The stellar, wind, and orbital parameters for LS 5039 simulations

	Primary	Secondary
Spectral Type	O6.5V	BH
Mass	22.9Msun	3.7Msun
Radius	9.3Rsun	2.5x10 ⁻³ a
Vinf	2,440 km/s	
Twind	39,000 K	
Mdot	5x10 ⁻⁷ Msun/yr	
Porb	3.9060 days	
Eccentricity	0.24	

Accretion of stellar wind with betavelocity law $v_w = v_{\infty}(1 - R/r)^{\beta}$ with $\beta = 1$ A snapshot of flow structure

KEY RESULT: SPH accretion rate closely follows Bond-Hoyle-Littleton rate

Summary of LS 5039 accretion sims • SPH sims show Mdot given by BHL rate! > direct accretion fits Fermi light curve for 0.1-10 Gev > BHL emission + γ - γ abs. fits HESS light curve for E > 1 TeV But model does not fit Energy Spectrum: $\gamma - \gamma$ absorption predicts hardening at minimum, whereas observations show softening at minimum

Simulations of accretion from Be disk: LS I +61 303 (Romero, Okazaki, Orellana, Owocki 2007, A&A, 474, 15, + new sims)

Numerical Model

In decretion/accretion sims, numerical viscosity adjusted to keep $\alpha_{ss} = 0.1$ • In CW sims, $\alpha_{\rm SPH} = 1, \beta_{\rm SPH} = 2$ Constant Mdot's from disk and star • Be decretion disk: isothermal $\Gamma = 1.2$ Accretion disk: polytrope with Stellar wind: with opt. thin rad. cooling

Mosaic from the Be Disk and AD Sims (Romero+ 2007)

Summary of LS I +61 303 Sims

- Accretion/ejection scenario predicts modulation of accretion power < 2
- Opt. and IR observations of Be disk can be used to probe the nature of compact object

• Explaining the radio maps is an open question.

Density on orbital plane

Column density along z-axis

Pulsar wind dominates Be wind and truncates Be disk, causing a strongly asymmetric circumstellar structure