AGILE Observations of Variable and Transient Gamma-Ray Sources in the Galactic Plane

A. Chen (INAF – IASF Milano) Workshop on "Variable Galactic Gamma-Ray Sources" Heidelberg, 2 December, 2010

Variable Galactic Sources seen by AGILE

- Pulsars and PWNe Crab, PSR B1259-63, γ-Cygni(?)
- X-ray binaries Cyg X-3, Cyg X-1, LSI+61 303, IGR J17354-3255
- Colliding Wind Binaries Eta Carinae
- "New" gamma-ray transient candidates

Pulsars and PWNe

Crab Flare – September 19-21, 2010

- Tavani et al., ATel # 2855
- AGILE is detecting an increased gamma-ray flux from a source positionally consistent with the Crab Nebula. Integrating during the period 2010-09-19 00:10 UT to 2010-09-21 00:10 UT the AGILE-GRID detected enhanced gamma-ray emission above 100 MeV from a source at Galactic coordinates (I,b) = (184.6, -6.0) + / - 0.4(stat.) + - 0.1 (syst.) deg, and flux F > 500 e-8 ph/cm2/sec above 100 MeV, corresponding to an excess with significance above 4.4 sigma with respect to the average flux from the Crab nebula (F = $(220 + - 15)e - 8 ph/cm^2/$ sec, Pittori et al., 2009, A&A, 506, 1563). We strongly encourage multifrequency observations of the Crab Nebula region.

PSR B1259-63

- Tavani et al., Atel #2772
- 2-4 August 2010
- F ~ 4e-6 cm⁻²s⁻¹ for E > 100 MeV
- Periastron in two weeks!

Could γ-Cygni be another variable PWN?

1AGL 2022+4032

- V = 2.18 (P = 0.0066)
- Could also be due to transient source superposition
 - Corresponding error circle has radius ~1°
 - Variable component of flux may be due to unidentified, steep spectrum source within 6 day error circle
 - Nearby source 1FGL J2020.0+4049, associated with VER J2019+407
 - Variable X-ray source in FOV, from Chandra data
 - Chen et al. 2011 A&A, 525, A33

AGILE and Cygnus X-3

- Nature, Nov. 22, 2009
 - see also Fermi detection of Cyg X-3,
 Abdo et al. Science Nov. 26, 2009
 - Bulgarelli et al., submitted to A&A
- AGILE detects several gamma-ray flares from Cygnus X-3, and also weak persistent emission above 100 MeV
- very interesting correlations with radio and X-ray spectral state changes

AGILE/GRID and Swift/BAT data of Cygnus X-3 Jan 2008 - Jun 2010

Variety of distinct X-ray states

figure adapted from Hjalmarsdotter et al. (2008)

Major gamma-ray flares in special transitional states in preparation of radio flares !

Multiwavelength monitoring of Cygnus X-3, Jun-Jul 2009

Multiwavelength monitoring of Cygnus X-3, Jun-Jul 2009

Multiwavelength monitoring of Cygnus X-3, Jun-Jul 2009

Spectrum of Cygnus X-3, Jun-Jul 2009

Multiwavelength monitoring of Cygnus X-3 Dec 2009 - Jun 2010

Implications...

- Cygnus X-3 can teach about BH systems and possibly also about blazars
- Its jet is pointing at us, it is a "micro-blazar"
- "preparation" for a major jet ejection and non-thermal extreme particle acceleration with GeV emission before plasmoid production is suggested also in some blazars
- Bright future for understanding BHs

EPISODIC TRANSIENT GAMMA-RAY EMISSION FROM CYG X-1

AGILE gamma-ray detection of Cygnus X-1 (Sabatini et al. ApJ, 2009)

CygX-1 Spectral Energy Distribution - persistent (Sabatini et al., 2010, ApJL)

CygX-1 Spectral Energy Distribution - Flare

Spectral energy distribution for Cyg X-1 and AGILE data above 100 MeV for the flaring episode (15 October 09)

->First reported 1-day gamma-ray flare (0.1-3 GeV) in hard state!

(for a 1 year monitoring with AGILE: Del Monte et al., 2010, accepted by A&A)

CygX-1 Flare - 30/6 - 2/7/2010

- Transition to the soft spectral state
 - MAXI/GSC (ATel #2711)
 - RXTE-ASM (ATel #2714)
- F ~ 2 x 10⁻⁶ ph/cm²/s (E > 100 MeV)

LSI 61 303 field (all data)

Gamma-ray sources near LS I +61 303

Source	AGILE contacts	1	b	error box radius	Average flux above 100 MeV
					$(10^{-8} \mathrm{phcm}^{-2} \mathrm{s}^{-1})$
LS I +61 303 (AGL J0242+6111)	1200-9994	135.54	1.1	0.1	41.7 ± 2.8
Source B (3EG J0229+6151)	1200-9994	133.3	1.4	0.3	14.6 ± 2.5
Source A	8996-9472	134.2	1.2	0.3	13.8 ± 3.5

peak phase	MJD	
0.7	54885	
0.6	54855	1.0
0.8	54835	0.5
(0.65)	(54805)	
0.4	54960	φ(TG) = 0.275
0.5	54350	-0.5 0.313
(~1)	(54868)	-1.0
~ 1	55026	-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 <i>x/a</i>

Variability of LSI 61 303

E > 100 MeV with 10% systematic error on fluxes

χ2 = 33.7832 for 23 degrees of freedom
V = 1.1652
Pvar = 0.931641

NB: V < 0.5 nonvariable source 0.5 < V < 1 uncertain V > 1 variable source
(McLaughlin et al. 1996)

Galactic "Micro-QSOs" (radio "jet" sources)

	Θ (degrees)	ß	Γ	L_{χ}/L_{E}	γ/TeV
Cyg X-1	?	?	?	0.1-1	YES
Cyg X-3	< 14	> 0.8	> 1.6	0.1-1	YES
SS 433	80	0.26	1.03	0.01	no
GRS 1915+104	70	0.92	<mark>25</mark>	0.1-1	P
GRO J1655-40	> 70	0.9	2.5	1	no
GRS 1758-258	?			0.1-1	no
XTE J1550-564	60-70	> 0.8	1.5	0.1-1	no
Sco X-1	> 70	> 0.8	> 1.6	0.1-1	no
LS I 61 303	?	?	?	10-4	yes
LS 5039	< 80	> 0.2	?	10-4	yes

Galactic "Micro-QSOs" (radio "jet" sources)

	Θ (degrees)	β	Γ	L_{χ}/L_{E}	γ/TeV
Cyg X-1	?	?	?	0.1-1	YES
Cyg X-3	< 14	> 0.8	> 1.6	0.1-1	YES
Salso the jet geometry of Cvg X-3 and no					
^G Cyg X-1 could explain the variability and					
^G the gamma-ray activity recently detected ^{no}					
GRS 1758-258	?			0.1-1	no
XTE J1550-564	60-70	> 0.8	1.5	0.1-1	no
Sco X-1	> 70	> 0.8	> 1.6	0.1-1	no
LS I 61 303	?	?	?	10-4	yes
LS 5039	< 80	> 0.2	?	10-4	yes

HMXB IGR J17354-3255

- AGILE Detection 14 April 2009
 - Bulgarelli et al. 2009 ATel # 2017
 - $F = 3.5e-6 cm^{-2}s^{-1}$
- Localized by Swift & Chandra
 - Vercellone et al. 2009 ATel # 2019
 - Tomsick et al. 2009 ATel # 2022
 - Highly absorbed power law
 - $N_{H} = 7.5e22 \text{ cm}^2$, $\Gamma = 0.54$, f=1.3e-11 erg/cm²/s
- Orbital period found by Swift/BAT
 - D'Ai' et al. 4 May 2010 ATel # 2596
 - P = 8.452 days, inferred eclipse at MJD 52726.25 ± nP_{orb}
 - Power law with exponential cutoff (15-150 keV)
 - Γ =1.4, E_{cut}=27 keV, f = 2e-11 erg/cm²/s

Eta Carinae

Tavani et al. 2009 ApJ, 698, L142

Eta Carinae - light curve

- 10-17 October 2008
- Peak flux = (270 ± 65)
 × 10⁻⁸ ph cm⁻² s⁻¹
- RXTE PCU2 data shows typical abrupt decrease near periastron in X-rays

Eta Carinae - spectrum

 Non-simultaneous data from INTEGRAL and SAX-MECS

Gamma-Ray Galactic Transients

- Some detection/hints from EGRET
 - example: GRO J1838-04 (Tavani et al. 1997)
 - anti-example: IAU-Circulars on transients then retracted e.g., (Kanbach et al...)
- AGILE detection of many tens of candidates (usually low-energy)
 - Examples:
 - 24 Nov. 2007
 - Crux Region transients
 - Carina Region transients (e.g. 4U 1036-56, 30/11/2010)
 - Eta-Car
 - Galactic Center transients (March 09)
 - L= 17
 - L = 8 (Easter-09 transient)
 - Cygnus transients
 - AGL J2241+4454, AGL J2206+6203

Easter transient: 10-13 April 2009, 10143-10180, bin =0.2, B16, FM, E>100 MeV

Easter transient: 10-13 April 2009, 10143-10180, bin =0.2, B16, FM, E>100 MeV

Easter transient: 10-13 April 2009, 10143-10180, bin =0.2, B17b, FT

Galactic gamma-ray transient candidates:

- GC region
- Cygnus region
- Carina region
- Crux region
- AGILE observes variability and detects new transients on time scales of 1 day at flux levels of 10⁻⁶ cm⁻²s⁻¹, even in crowded, high diffuse emission Galactic plane regions.
- NO detectable simultaneous hard X-ray emission (F < 20-30 mCrab, 18-60 keV, 1-day integration)

Energetics...

- Gamma-ray luminosity above 100 MeV
 L = (a few) x 10³⁴ d²_{kpc} erg/s
- Compatible with WR/CWB expectations

 It could be a class of WR/CWB or flaring stars
- But also it could be a NEW CLASS of (non-accreting or low X-ray) sources

AGILE Catalog of Variable and Transient Sources in preparation

• F. Verrecchia et al 2011, in preparation

AGILE Catalog of Variable and Transient Sources in preparation

V McLaughlin vs Chi² on FluxErr+10% systematic, sqrt(TS)>=2

Conclusions

- Wide variety of variable gamma γ-ray sources
- Discovery of PWN variability
- Microquasar γ-ray flares coincide with radio/X state transitions
- Many Galactic transients observed
 - Some source variability may be due to hidden transients
 - Catalog in preparation

Backup Slides

AGILE vs. Fermi: different results

- AGILE-GRID is optimized near 100 MeV, Fermi-LAT at E > 1 GeV
 - Fermi extrapolates from E > 200 MeV to determine flux E > 100 MeV
 - Due to AGILE energy resolution, E > 100 MeV flux contains large contribution from sub-100 MeV photons

AGILE vs. Fermi: different results

- depending on the season and source position, AGILE and Fermi can have quite different exposure below 1 GeV
 - exposure and off-axis distribution
 - different livetime sequence,
 different time windows

a comparison: 1-day exposure

	p-AGILE (GRID)	sp-AGILE (GRID)	FERMI (LAT front)
FOV (sr)	2.5	2.5	2.5
Attitude	fixed	variable (spinning)	variable
sky coverage	1/5	~ 70%	whole sky
Source livetime fraction	~ 0.5	~ 0.2	~ 0.16
1-day exposure (30 degree off-axis, 100 MeV)	~ 2 10 ⁷ (cm ² sec)	(0.5-1) 10 ⁷ (cm ² sec)	~(1-2) 10 ⁷ (cm² sec)

Example: Fermi Galactic Centre 1-month integration (20 Feb-20 Mar 2010) off-axis angle vs. time and cumulative histogram (Sabatini etal. 2010)

Cyg X-3: AGILE and Fermi time coverage and off-axis angle

AGILE and Fermi off-axis angle (18-28 July 2009)

