results

VHE emission in $\mu \rm Q$ jets/ISM interactions

Pol Bordas

V. Bosch-Ramon, M. Perucho, J. M. Paredes

Heidelberg, December $2^{\rm nd}$ 2010

Overview

frodyamical simulations

results

SS433/W50 in

conclusions

• extragalactic \rightarrow galactic ?

- extragalactic \rightarrow galactic ?
- Interaction model

- extragalactic \rightarrow galactic ?
- Interaction model
- Hydrodynamical simulations

- extragalactic \rightarrow galactic ?
- Interaction model
- Hydrodynamical simulations
- Application to SS433/W50

- extragalactic \rightarrow galactic ?
- Interaction model
- Hydrodynamical simulations
- Application to SS433/W50
- Conclusions

Outline

drodyamical simulations

results

Jet-medium interactions

Quasar/IGM interactions $\iff \mu$ -quasar/ISM interactions?

Cygnus A (Perley et al. 1984)

> 1E 1740 (Mirabel et al. 1992)

FR galaxies and microquasars

similar jet physics...

- Relativistic jets ($l_{\rm jet} \sim$ light-years in μ -quasars, $l_{\rm jet} \sim$ mega-light-years in quasars)
- Accretion → jet ejection (magnetohydrodynamical?) origin
- Non-thermal radio to γ-ray emission mechanisms
- "Fundamental Plane" $L_{
 m radio} \propto L_{
 m X}^{0.6} \, M_{
 m bh}^{0.8}$ (phenomenological)

...but some (relative) differences

- Heinz (2002): jet-medium interaction dynamics depend on $\eta = \frac{L_{jet}}{R^2} \frac{1}{\rho c_s^3}$
- η being $M_{\rm bh}$ -independent $\Rightarrow \rho \propto M_{\rm bh}^{-1} \Rightarrow \begin{cases} \rho \gtrsim 10^4 {\rm cm}^{-3} & {\rm and/or} \\ L_{\rm jet} \ {\rm much \ larger} & {\rm and/or} \\ L_{\rm jet} \ {\rm more \ powerful} & {\rm and/or} \\ F_{\nu} \ {\rm much \ fainter} \end{cases}$

- High-mass systems
 - SS 433 Cyg X-1 Cyg X-3 LSI 61+303 LS 5039 V4641 Sgr
- Low-mass systems

Cir X-1 XTE J1550-564 1E 1740.7-2942 GRS 1758-258 H 1743-32 Scorpius X-1 GRS 1915+105 GRO J1655-40 GX 339-4 XTE J1748-288

High-mass systems

 SS 433
 (Zealey et al. 1980, Dubner et al. 1998)

 Cyg X-1
 (Martí et al. 1996, Gallo et al. 2005)

 Cyg X-3
 ? (Heindl et al. 2003, Sánchez-Sutil 2008)

 LSI 61+303
 ? (Paredes et al. 2007, Rea et al. 2010)

 LS 5039
 V4641

Low-mass systems

Cir X-1 (Tudose et al. 2006, Heinz et al. 2007) XTE J1550-564 (Corbel et al. 2002, Kaaret et al. 2003) 1E 1740.7-2942 (Mirabel et al. 1993) GRS 1758-258 (Martí et al. 2002) H 1743-32 (Corbel et al. 2005) Scorpius X-1 (Fomalont et al. 2001) GRS 1915+105 ? (Kaiser et al. 2004, Zdziarski et al. 2005) GRO J1655-40 GX 339-4 XTE J1748-288

Jet-medium interactions

- Mildly relativistic (F \sim 1 2) jets, $\mathit{I}_{\rm jet}\gtrsim10^{19}$ cm
- Jet's $\theta_{\rm init} = 0.1~{\rm rad} + {\rm reconfinement}$ at $\mathit{l}_{\rm rec} \, \sim \, 10^{18}~{\rm cm}$
- Interaction zones: reconfinement region, cocoon & shell
- $\rho_{\rm ISM} \sim 0.1 1.0 \ {\rm m_p \ cm^{-3}} + {\rm companion \ winds}, \ {\rm SNR \ shell}...$

drodyamical simulations

results

Jet-medium interaction model

Outline

Jet-medium interaction model

shock conditions

• Forward shock:
$$\mathcal{M} = v_{\rm bow} \cdot \left(\frac{\rho_{\rm ISM}}{\Gamma_{\rm ISM}\rho_{\rm ISM}}\right)^{1/2}$$
, $\rho_{\rm sh} = \left(\frac{\Gamma_{\rm ISM}+1}{\Gamma_{\rm ISM}-1}\right) \rho_{\rm ISM}$, $P_{\rm sh} = \frac{3-(3/5\mathcal{M}^2)}{4} \cdot \rho_{\rm ISM}v_{\rm bow}$

• Reverse shock:
$$\rho_{\rm shocked} = \left(\frac{\gamma_{\rm ad}\Gamma_{\rm jet}+1}{\gamma_{\rm ad}-1}\right) \rho_{\rm rec.jet}$$
, $P_{\rm shocked} = (\gamma_{\rm ad}-1)(\Gamma_{\rm jet}-1) \cdot \rho_{\rm shocked}c^2$

• Reconfinement shock:
$$\rho_{\rm shocked} = \frac{\Gamma_{\rm jet} + 1}{\Gamma_{\rm jet} - 1} \rho_{\rm jet}(z), P_{\rm shocked} = P_{\rm cocoon} \sim \frac{Q_{\rm jet} t_{\mu}Q}{V_{\rm b}}; V_{\rm b} \sim (4/3) \pi r_{\rm b}^2 \times I_{\rm b}$$

non-thermal emitters

- Shell and cocoon: one zone model (B, $U_{\rm ph}$ taken homogeneous); recollimation: $U_{\rm ph}(z)$
- $\int N_0(E) E \, dE = \chi \, Q_{\rm jet};$ $N_0(E) \propto E^{-p}; \ p = 2.1$
- $u_{\rm B} = B^2/8\pi = 10\%$ ram/thermal pressure
- Magnetic field equipartition fraction: $B = \eta u_e$ in each interaction zone

•
$$U_{\rm phot} = \begin{cases} \frac{L_{\star}}{4 \pi c l_{\rm bow}^2} |u_{\rm CMB} & \text{cocon \& shell} \\ u(z_{\rm reconf}) \times (\frac{z_{\rm jet}}{z_{\rm reconf}})^2; & \text{reconfinement region} \end{cases}$$

• spectral aging of the non-thermal particle populations: $N_0(E) \longrightarrow N(E, t)$

Hydrodyamical simulations

Numerical setup

- two-dimensional finite code to solve the equations of reltivistic hydrodynamics (Perucho et al. 2005, 2007)
- axial symmetry, two-dimensional cylindrical coordinates (R, z)
- low resolution → macroscopic features only (not mixing nor turbulence studies allowed)
- $t_{
 m evol} pprox 5 imes 10^4$ yr

input value
3
$n_{\rm ext} = {\rm cte} = 0.3 {\rm cm}^{-3}$
$n_{ m jet} = 1.4 imes 10^{-5} \ m cm^{-3}$
$L_{ m jet}=3 imes10^{36}~{ m erg~s^{-1}}$
$t_{ m src}=3 imes10^4$ yr
$r_{ m jet}=2 imes10^{16}$ cm
$v_{ m jet}=0.6c$
$\mathcal{M}=6.5$

results

Hydrodyamical simulations

 $\rho(z,r)$ and P(z,r)

 $\Gamma(z,r)$ and $\mathcal{M}(z,r)$

(Bordas et al. 2009)

Hydrodyamical simulations

Pressure and mass densities (shell and cocoon)

Outline

w

Irodyamical simulations

results

SS433/W50 interaction

conclusions

hydrodyamical simulations

Checking the analytical model

- $\mathit{I}_{\rm bow} \sim 3.3 \times 10^{19}$ cm; $\mathit{v}_{\rm bow} \sim 3 \times 10^7$ cm s^{-1}; $\mathcal{R} = 2.7$
- $P_{
 m coc/shell} \sim 10^{-10} \ {
 m erg} \ {
 m cm}^{-3} \gg P_{
 m ISM}$
- $ho_{
 m shell} \sim 2 imes 10^{-25} \ {
 m g \ cm^{-3}},
 ho_{
 m coc} \sim 4 imes 10^{-29} \ {
 m g \ cm^{-3}}$
- strong reconfinement shock at $z_{\rm reconf} \sim~2\times~10^{18}$ cm

Checking the analytical model

- multiple reconfinement conical shocks after $z_{
 m reconf}$ until $z \lesssim \mathit{l}_{
 m bow}$
- coupling to a Kevin-Helmoltz instability?

Broadband non-thermal emission

results

Broadband non-thermal emission

- $F_{10-100 \text{ keV}} \sim 2.1 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$
- $F_{100 \text{ MeV} \le E \le 100 \text{ GeV}} \sim 1.7 \times 10^{-16} \text{ erg cm}^{-2} \text{ s}^{-1}$
- $F_{>100~{
 m GeV}} \sim 2.8 \times 10^{-17} {
 m erg cm}^{-2} {
 m s}^{-1}$

 $10^{37}~{
m erg~s^{-1}}$, $1.0~{
m cm^{-3}}$, $10^5~{
m y}$, $d=3~{
m kpc}$

• $F_{5 \text{ GHz}} \sim 580 \text{ mJy}$ • $F_{0.1-10 \text{ keV}} \sim 1.4 \times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}$ • $F_{10-100 \text{ keV}} \sim 1.0 \times 10^{-13} \text{ erg cm}^{-2} \text{ s}^{-1}$ • $F_{100 \text{ MeV} \le E \le 100 \text{ GeV}} \sim 2.7 \times 10^{-14} \text{ erg cm}^{-2} \text{ s}^{-1}$ • $F_{>100 \text{ GeV}} \sim 1.5 \times 10^{-15} \text{ erg cm}^{-2} \text{ s}^{-1}$

Application to SS433/W50

(Dubner et al. 1998)

Application to SS433/W50

Source description

- First stellar compact object where relativistic jets were found (Spencer 1979)
- Binary system: \sim 9 M_{\odot} black-hole and a \sim 30 \pm 10 M_{\odot} A3–7 supergiant companion
- Distance pprox 5.5 kpc
- *P* of 13.1 d in a \sim circular orbit, $i \approx 78^{\circ}$
- Precessing jets (v_{\rm jet}= 0.26 c, $P_{
 m pr}\sim$ 162 d, $heta_{
 m pr}\sim$ 21°)
- Doppler shifted iron lines observed up to 10^{17} cm \Rightarrow in-situ reheating?
- Super-Eddington accretion disk, $M_{
 m accr} = 10^{-4}~M_{\odot}/y$
- Interaction with the surrounding W50 nebula ($\Rightarrow L_{\rm jet,kin} \sim 10^{39} \mbox{ erg s}^{-1})$
- Non-thermal radio-to-X-ray hot-spot emission both in the East and West "ears"

Non-thermal emission from east and west interaction regions

Observations of SS433 at VHE gamma-rays

Previous observations

• HEGRA observations in 1998–2001, for $t_{obs} \ge 100$ h (Aharonian et al. 2005)

Source	Obs. time	$^{a}E_{\mathrm{th}}$	$\theta_{\rm cut}$	\$	b	^{b}S	$^{c}\phi_{\mathrm{crab}}^{99\%}$	$^{d}\phi^{99\%}$
	[h]	[TeV]	[deg]				$[\sigma]$	
		SS-433/	W50 and asso	ciated				
SS-433 e1	72.0	0.8	0.13	315	1972	-0.4	0.023	6.18
SS-433 e2	73.1	0.8	0.21	794	4980	-0.7	0.034	9.18
SS-433 e3	68.8	0.8	0.28	1247	8108	-2.0	0.032	8.96
SS-433	96.3	0.8	0.15	433	2541	+0.8	0.032	8.93
SS-433 w1	104.9	0.7	0.14	352	2168	-0.1	0.024	6.65
SS-433 w2	100.7	0.7	0.14	334	1994	+0.4	0.031	9.00

• CANGAROO-II observations in 2001–2002 of the western interaction region for $t_{obs} \sim 85$ h (Hayashi et al. 2009, astro-ph 0909.0133)

Source	R.A.	Decl.	$^{a}N_{s}$	^b S	$\phi^{99\%}$
<i>p</i> 1	19 ^h 10 ^m 17 ^s	$+4^{\circ}57'46''$	39	0.39	1.5
p2	$19^{h}09^{m}44^{s}$	$+4^{\circ}58'48''$	-12	-0.11	1.3
<i>p</i> 3	$19^{h}09^{m}12^{s}$	$+4^{\circ}59'13''$	-97	-1.0	0.79

results

Jet-medium interaction model

Interaction model applied	
Parameter	Value
Jet kinetic power ${\it Q}_{ m jet}$ (erg s $^{-1}$)	10 ³⁹
ISM density $n_{ m ISM}$ (cm $^{-3}$)	1
Source age t_{MQ} (yr)	$5 imes 10^4$
Jet Lorentz factor $\Gamma_{\rm jet}$	1.04
Jet opening angle Ψ (°)	1.2
Star Luminosity L_{\star} (erg s $^{-1}$)	10 ³⁹
Self-Similar parameter ${\mathcal R}$	3
Non-thermal fraction χ	0.01

$SS433/W50\ interaction$

- Bow shock at $\sim 6 imes 10^{20}$ cm
- Reverse shock at $\sim 4.5 \times 10^{20}~\text{cm}$
- Cocoon's width $\sim 5\times 10^{19}~\text{cm}$

Physical properties	Inferred values
SHELL	
$\begin{array}{l} \mbox{Magnetic field B (G)} \\ \mbox{Shock velocity $v_{\rm b}$ (cm s$^{-1}$)} \\ \mbox{Emitter size r (cm)} \\ \mbox{Rad. energy dens. u_{\star} (erg cm$^{-3}$)} \\ \mbox{Maximum energy $E_{\rm max}$ (TeV)} \\ \mbox{Target density $n_{\rm t}$ (cm$^{-3}$)} \end{array}$	$6 \times 10^{-5} 4.4 \times 10^{7} 2.3 \times 10^{20} 5.0 \times 10^{-14} 54.2 4.0$

Physical properties	Inferred values
COCOON	
Magnetic field B (G) Shock velocity v _S (cm s ⁻¹) Emitter size r (cm) Rad. energy dens. u_{\star} (erg cm ⁻³) Maximum energy E_{max} (TeV)	$\begin{array}{c} 3.8 \times 10^{-5} \\ 1.6 \times 10^{10} \\ 5.5 \times 10^{19} \\ 6.4 \times 10^{-14} \\ 280.5 \end{array}$
RECONFINEMENT	
Magnetic field B (G) Shock velocity v_{conf} (cm s ⁻¹) Emitter size r (cm) Rad. energy dens. u_{\star} (erg cm ⁻³) Maximum energy E_{max} (TeV)	5.2×10^{-5} 1.9×10^{9} 1.9×10^{17} 2.5×10^{-10} 5.2

SS433/W50 interaction

- Radio: 1465 MHz eastern wing flux \sim 15 Jy \rightarrow (Downes et al. 1981; Dubner et al. 1998) $\Rightarrow \sim 10^{33}$ erg s⁻¹ (d = 5.5 kpc) \approx predicted by the model.
- X-rays: $L_{0.4-4.5 \text{ keV}} \sim 10^{34} \text{ erg s}^{-1}$ (Safi-Harb & Petre 1999) \sim X-ray flux from both the bow shock and cocoon (although it extends to higher energies in this case)

SS433/W50 interaction

• γ -rays: $E \ge 100 \text{ GeV} = 2.27 \times 10^{-14} \text{ ph cm}^{-2} \text{ s}^{-1} \ll \text{current Cherenkov sensitivities} < \text{next CTA sensitivities }?$

	Conclu	usions	

- Extragalactic interaction model easily applied to $\mu\text{-}\mathsf{quasars}$
- hydrodynamical simulations \rightarrow pressures, mass densities and source geometry: good agreement with analytical model
- Multiple conical shocks present in hydrodynamical simulations, vs one only shock in the analytical model
- Radio to X-ray fluxes could be detected, gamma-ray fluxes too faint (see however Zhang & Feng 2010)
- Dependence on the ambient density profile not accounted for
- pp interactions not studied (e.g., Heinz & Sunyaev 2002)
- SS 433/W50: strong candidate (high $L_{\rm jet}$, high $n_{\rm ISM}$ in the W50 nebula)
- interactions remain undetected at VHE $\gamma\text{-rays}$ (HEGRA & CANGAROO-II): target for next generation IACTs?)

Zhang & Feng (2010): "Non-thermal emission from the termination of microquasar jets"

Table 2. Parameters adopted to calculate SEDs.

Paramete 1	Fig. 2	Fig. 3	Fig. 4
Ratio of Liet to Lnon	0.01	0.1	0.1
Source age t_4 (10 ⁴ yr)	3	3	3
$L_{39} (10^{39} \text{ erg s}^{-1})^a$	1	1	1
Power-law index	1.8	2	1.8
Temperature $T_4 (10^4 \text{ K})^b$	3	3	3
Diffusion radius R(pc)	3.5	3	3
Magnetic field B (µG)	12	6	5.5
Ratio of L_e to L_p (K _{cb}	0.01	1	1
Shell width r_{sh} (pc)	0.8	0.6	0.7
Shell density n _H (cm ⁻³)	250	1000	900
Shell length lsh (pc)	10	9	11

aIndicates the luminosity of stellar companion. ^bThe stellar effective surface temperature.

Cocoon Syn

Total Spectrum

Prim, Elec, IC

10" 10" 10" 10" 10"

10

10²

1020

Photon Energy[eV]

Cocoon IC

10³ 10⁵ 10⁷ 10⁹ 10¹¹ 10¹

Figure 2.