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Motivation

HMMQs are formed by a compact object and a donor
massive early-type star. They present relativistic jets.

Strong observational evidence suggests that stellar winds
of massive stars are clumpy (Owocki & Cohen 2006).

The interaction of these inhomogeneities (clumps) with the
MQ jet may lead to flaring activity (Owocki et al. 2009).

Very high-energy flares could have been detected from
Cygnus X-1, LS I +61 303, LS 5039 (Paredes 2009, and
references therein) and Cygnus X-3 (Tavani et al. 2009,
Abdo et al. 2010).
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The microquasar scenario

We assume a supersonic and hydrodynamical jet...

Height/width relation:
rj = 0.1 zj

...and a clumpy wind with a
filling factor f .
Clumps parameters:

Radius: Rc = 0.1 − 0.01 R⋆

Density: ρc = ρwind/f

Velocity: vc = vwind

An important parameter:
χ ≡ ρc

ρj(Γj−1)

Wind

γ

Z

a

φ

BH
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Relevant dynamical timescales (I)

Clump/jet penetration time: tc ∼ 2 Rc
vc

Jet crossing time: tj ∼
2 Rj

vc

Two shocks are formed:
Clump shock crossing time: tsc ∼

2 Rc
vsc

, vsc =
vj√
χ

Bow-shock formation time: tbs ∼
Z
vbs

∼ 0.2 Rc
vj

csV

Z

V
j
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Relevant dynamical timescales (II)

The jet can accelerate the clump.

Clump acceleration time: tacc
c ∼ 2 Rc

gj
∼

√
χ tsc, gj ∼

v2
j

χRc
.

Instabilities grows in the jet/clump contact surface.
Rayleigh-Taylor and Kelvin-Helmholtz instabilities:
tRT,KH ∼ tsc.

g

v j v j1

KH

KH

RT

obstacle

bow shock

Numerical simulations show that clump disruption needs several tsc (Klein, McKee & Colella 1994)
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Location of the accelerator / emitter

Interaction height: tsc > tc ⇒
zint > 7.3 ×

1010
( vc

2000 km s−1

)−1
(

nc
1013 cm−3

)−1/2 (

vj

c/3

)1/2 (

Lj

1036 erg s−1

)1/2
cm

Bow shock: good place for particle acceleration.
(Lsh ∝ v3

sh → Lbs/Lsc ∝ χ)
Jet-shocked region + clump: emitters.

Injected relativistic particles: Qe,p = Ke,p E−2
e,p

Luminosity of relativistic particles: Lnt = ηntLbs = ηnt

(

Rc
Rj

)2
Lj

Magnetic field: UB = ηBUnt = ηB
Lnt
σc c → B =

√

8π ηB
Lnt
σc c
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Shocked jet and clump emission

Shocked jet emission

Synchrotron emission.

Synchrotron self Compton (SSC)

External Compton (EC)

Relativistic Bremsstrahlung and pp are negligible.

Clump non-thermal emission

The most relativistic electrons and protons can diffuse up
to the clump.

Relativistic Bremsstrahlung and pp emission.

Clump thermal emission

The shock in the clump can be radiative.
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The case of Cygnus X-3

Binary system: WR + compact object

a ∼ 3 × 1011 cm (∼ 2 R⋆)

Lj ∼ 1038 erg s−1

Ṁ∗ ∼ 10−5 M⊙ yr−1

L∗ ∼ 1039 erg s−1

vw ∼ 2000 km s−1

Rc = 109 cm (∼ 0.01 R⋆)

Characteristics of the interaction...

Interaction height: zint & 2 × 1011 cm

Jet density: nj . 5 × 1010 cm−3
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Interaction timescales

Clump/jet penetration time:
tc ∼ 2 Rc

vc
∼ 10 s

Jet crossing time:
tj ∼

2 Rj

vc
∼ 70 s

Clump shock crossing
time:
tsc ∼

2 Rc
vsc

∼
2 Rc

√
χ

vj
∼ 600 s

Bow-shock formation time:
tbs ∼

3 Rc
2 vj

∼ 1 s
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Bow-shock particle acceleration

Assuming UB = ηBUnt → Bbs =
√

ηB 7.3 × 103 G

Uph⋆ ∼ 3 × 104 erg s−1

Electrons: tacc = tdiff/sinc → Emax
e ∼ 1 TeV.

Protons: tacc = tdiff → Emax
p ∼ 1 − 10 TeV
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Clump + bow-shock emission

Synchrotron emission is self-absorbed.

Lγ & 1034 erg s−1.

γ⋆ − γ absorption: Eγ & 10 GeV.
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Interaction of many clumps

Filling factor of clumps into the wind: f ∼ 0.01

Clumps simultaneously in the jet: Nc ∼ f Vj/Vc

If tlife < tj/accel → Nc < f Vj/Vc

Rc = 0.01R⋆ → Nc large → non flaring activity.

Rc = 0.1R⋆ → Nc small (< 1) → flaring activity

Total non-thermal luminosity:

Ltot
nt ∼ 2

∫

zmin

dN j
c

dz Lnt(z) dz.

z

...

... ...
.
..

.
z

z ~ 2a

int 

min
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Conclusions

The existence of HMMQs and clumps is supported by
observations. Then, jet-clump interactions should occur.

Bow-shock particle acceleration.

Many small clumps (Rc = 0.01 R⋆) inside the jet: large level
of emission, flickering in the spectrum.

Few (. 1) large clumps (Rc = 0.1 R⋆) inside the jet: flares

HE emission is produced via synchrotron, SSC and EC.

In Cygnus X-3, 1 clump with Rc = 109 cm can produce
Lph & 1034 erg s−1 (in the Fermi range). But...

...Rc = 109 cm → Nc ∼ 104.
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