### Neutrinos - Theory

#### M. Hirsch

mahirsch@ific.uv.es

Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain



 $\mathcal{I}$ . Introduction

 $\mathcal{I}\mathcal{I}$  . Trees and Loops

 $\mathcal{III}. \ 0 \nu \beta \beta$  , LNV and  $m_{
u}$ 

 $\mathcal{I}\mathcal{V}.$  LNV and LHC

 $\mathcal{V}$ . Summary

## $\mathcal{I}.$

# Introduction



 $\Rightarrow$  Are neutrinos Majorana particles?

### Dirac $\mathcal{M}_{\nu}$

If Lepton Number is Conserved:

$$\mathcal{L} = \mathcal{L}^{SM} + Y^{\nu}_{ij} \bar{L}_i H \nu_{R,j}$$

Experimental data requires:  $|Y_{\nu}| \simeq 10^{-12}$ 

Fit to all oscillation data possible and simple, but ...

 $\Rightarrow$  Any "predictions" of this scenario???

### Dirac $\mathcal{M}_{\nu}$

If Lepton Number is Conserved:

$$\mathcal{L} = \mathcal{L}^{SM} + Y^{\nu}_{ij} \bar{L}_i H \nu_{R,j}$$

Experimental data requires:  $|Y_{\nu}| \simeq 10^{-12}$ 

Fit to all oscillation data possible and simple, but ...

 $\Rightarrow$  Any "predictions" of this scenario???

(i) No double beta decay

(ii) No charged lepton flavour violation

(iii) No Accelerator tests

 $\Rightarrow$  Experimentalists only measuring a "bunch of Yukawas"

 $\Rightarrow$  To exclude this scenario: MUST observe a  $\Delta L = 2$  process

 $\Rightarrow$  Are neutrinos Majorana particles?

A: Observe LNV!

 $\Rightarrow$  Are neutrinos Majorana particles?

- A: Observe LNV!
- $\Rightarrow$  What is the energy scale of LNV?

Direct test: LHC? Or indirect: LFV?  $0\nu\beta\beta$  decay?



 $0\nu\beta\beta$ , LFV:





#### WIN 2014, 08/06/2015 - p.11/74

# **Open questions**

 $\Rightarrow$  Are neutrinos Majorana particles?

- A: Observe LNV!
- ⇒ What is the energy scale of LNV? Direct test: LHC? Or indirect: LFV?  $0\nu\beta\beta$  decay?
- $\Rightarrow$  Can we understand flavour structure?



See talks by: S. Morisi A. Merle

 $\frac{\sin^2(\theta_{\rm Atm}) \simeq 1/2}{\sin^2(\theta_{\odot}) \simeq 1/3}$  $\frac{\sin^2(\theta_{\rm R}) \simeq \epsilon}{\sin^2(\theta_{\rm R}) \simeq \epsilon}$ 

#### $\Rightarrow$ Are neutrinos Majorana particles?

#### A: Observe LNV!

- $\Rightarrow \text{What is the energy scale of LNV?} \\ \text{Direct test: LHC? Or indirect: LFV? } 0\nu\beta\beta \text{ decay?} \\ \end{cases}$
- $\Rightarrow$  Can we understand flavour structure?
- $\Rightarrow$  Are neutrinos related to DM?
  - ightarrow (keV sterile) Neutrinos could be DM
  - → Particles generating  $m_{\nu}$  could be DM Example: "scotogenic" neutrino model Explain flavour as well? "Discrete DM"

Talk by: T. Asaka

Ma, 2006 Morisi et al, 2010

#### $\Rightarrow$ Are neutrinos Majorana particles?

#### A: Observe LNV!

- ⇒ What is the energy scale of LNV? Direct test: LHC? Or indirect: LFV?  $0\nu\beta\beta$  decay?
- $\Rightarrow$  Can we understand flavour structure?
- $\Rightarrow$  Are neutrinos related to DM?
- $\Rightarrow$  Is there CPV in the lepton sector? Majorana phases? Talks by: H. Minakata
- $\Rightarrow$  Can we predict CPV?

M.-C. Chen A. Titov M. Tanimoto

#### $\Rightarrow$ Are neutrinos Majorana particles?

#### A: Observe LNV!

- ⇒ What is the energy scale of LNV? Direct test: LHC? Or indirect: LFV?  $0\nu\beta\beta$  decay?
- $\Rightarrow$  Can we understand flavour structure?
- $\Rightarrow$  Are neutrinos related to DM?
- $\Rightarrow$  Is there CPV in the lepton sector? Majorana phases?
- $\Rightarrow$  Can we predict CPV?
- $\Rightarrow$  Are neutrinos linked to the BAU?

Talks by: J. Harz B. Dev

#### $\Rightarrow$ Are neutrinos Majorana particles?

#### A: Observe LNV!

- ⇒ What is the energy scale of LNV? Direct test: LHC? Or indirect: LFV?  $0\nu\beta\beta$  decay?
- $\Rightarrow$  Can we understand flavour structure?
- $\Rightarrow$  Are neutrinos related to DM?
- $\Rightarrow$  Is there CPV in the lepton sector? Majorana phases?
- $\Rightarrow$  Can we predict CPV?
- $\Rightarrow$  Are neutrinos linked to the BAU?
- $\Rightarrow$  Are there more than 3 light neutrinos?

Talks by: J. Kopp G. Collin

#### $\Rightarrow$ Are neutrinos Majorana particles?

#### A: Observe LNV!

- ⇒ What is the energy scale of LNV? Direct test: LHC? Or indirect: LFV?  $0\nu\beta\beta$  decay?
- $\Rightarrow$  Can we understand flavour structure?
- $\Rightarrow$  Are neutrinos related to DM?
- $\Rightarrow$  Is there CPV in the lepton sector? Majorana phases?
- $\Rightarrow$  Can we predict CPV?
- $\Rightarrow$  Are neutrinos linked to the BAU?
- $\Rightarrow$  Are there more than 3 light neutrinos?
- $\Rightarrow$  Normal hierarchy or Inverted Hierarchy?
- $\Rightarrow$  Others ...

### II.

### Majorana neutrinos: A tale of

# Trees and Loops

WIN 2014, 08/06/2015 - p.17/74

### Theoretical expectation?

Majorana Neutrino mass

 $m_{\nu} \simeq \frac{(Yv)^2}{\Lambda}.$ 

Weinberg, 1979

Smallness of neutrino mass can be "explained" by:

 $\Rightarrow$  High scale: Large  $\Lambda$ "classical" seesaw Minkowski, 1977

Yanagida, 1979 Gell-Mann, Ramond, Slansky, 1979 Mohapatra, Senjanovic, 1980 Schechter, Valle, 1980

Foot et al., 1988

## Theoretical expectation?

Majorana Neutrino mass generated from an n-loop dimension d diagram:

$$m_{\nu} \simeq \frac{(Yv)^2}{\Lambda} \cdot \epsilon \cdot \left(\frac{Y^2}{16\pi^2}\right)^n \cdot \left(\frac{Yv}{\Lambda}\right)^{d-5}$$

Smallness of neutrino mass can be "explained" by:

- ⇒ High scale: Large  $\Lambda$ "classical" seesaw
- ⇒ Loop factor:  $n \ge 1$ + "smallish"  $Y \sim \mathcal{O}(10^{-3} - 10^{-1})$
- $\Rightarrow$  Higher order: d = 7, 9, 11
- $\Rightarrow$  Nearly conserved *L*, i.e. small  $\epsilon$  ("inverse seesaw")
- $\cdots$  or combination thereof



### Effective operators $d \ge 5$

d = 5:

Weinberg, 1979

 $\mathcal{O}_W \propto (LH)(LH)$ 

One d=5

### Effective operators $d \ge 5$

d = 5:

Weinberg, 1979

Babu & Leung, 2001

 $\mathcal{O}_W \propto (LH)(LH)$ 

One d=5

d = 7:

 $\mathcal{O}_2 \propto LLLe^c H$  $\mathcal{O}_3 \propto LLQd^c H$  $\mathcal{O}_4 \propto LL ar{Q} ar{u}^c H$  $\mathcal{O}_8 \propto L ar{e}^c ar{u}^c d^c H$  de Gouvea & Jenkins, 2007 4 (+1) d = 7 $\mathcal{O} \propto (LH)(LH)(H_uH_d)$ 

d = 9:

 $\mathcal{O}_5 \propto LLQd^cHHH^{\dagger}$  $\mathcal{O}_6 \propto LL\bar{Q}\bar{u}^cHH^{\dagger}H$  $\mathcal{O}_7 \propto LQ\bar{e}^c\bar{Q}HHH^{\dagger}$ 

. . . . . .

many d = 9 and d = 11 ops

 $\mathcal{O}_9 \propto LLLe^c Le^c$   $\mathcal{O}_{10} \propto LLLe^c Qd^c$   $\mathcal{O}_{11} \propto LLQd^c Qd^c$ 

. . . . . .

### d = 5 tree-level: Seesaw

Seesaw type-I, right-handed neutrinos:

$$m_{1/2} \simeq (-\frac{Y_{\nu}^2 v^2}{M_M}, M_M)$$

For  $M_M \sim 10^{15} \text{ GeV} \Rightarrow Y_{\nu} \sim 1$ 

Seesaw type-II, scalar triplet:

$$m_{\nu} \simeq Y_T \langle \Delta_L^0 \rangle \simeq Y_T v^2 \frac{\mu_{\Delta}}{m_{\Delta}^2}$$

For  $m_{\Delta} \simeq \mu_{\Delta} \sim 10^{15} \text{ GeV} \Rightarrow Y_T \sim 1$ 

Type-III: Replace  $\nu_R$  by  $\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$ :

$$m_{1/2}\simeq(-\frac{Y_{\Sigma}^2v^2}{M_{\Sigma}},M_{\Sigma})$$
 For  $M_{\Sigma}\sim 10^{15}~{\rm GeV}\Rightarrow Y_{\Sigma}\sim 1$ 



WIN 2014, 08/06/2015 - p.22/74

### Seesaw: Near EW scale

Seesaw type-I, right-handed neutrinos:

$$m_{1/2} \simeq (-\frac{Y_{\nu}^2 v^2}{M_M}, M_M)$$

For  $M_M \sim 100 \text{ GeV} \Rightarrow Y_{\nu} \sim 10^{-7}$ 

Seesaw type-II, scalar triplet:

$$m_{\nu} \simeq Y_T \langle \Delta_L^0 \rangle \simeq Y_T v^2 \frac{\mu_{\Delta}}{m_{\Delta}^2}$$

For  $m_{\Delta} \simeq 100 \text{ GeV}$  and  $\mu_{\Delta} \sim 1 \text{ eV} \Rightarrow Y_T \sim 1$ 

Type-III: Replace  $\nu_R$  by  $\Sigma = (\Sigma^+, \Sigma^0, \Sigma^-)$ :

$$m_{1/2} \simeq (-\frac{Y_{\Sigma}^2 v^2}{M_{\Sigma}}, M_{\Sigma})$$

For  $M_{\Sigma} \sim 100 \text{ GeV} \Rightarrow Y_{\Sigma} \sim 10^{-7}$ 



WIN 2014, 08/06/2015 - p.23/74

### Linear & inverse seesaw

Inverse seesaw, basis  $(\nu, \nu^c, S)$ :

$$M_{\nu} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & 0 & M \\ 0 & M^T & \mu \end{pmatrix},$$

Mohapatra & Valle, 1986

Akhmedov

After EWSB the effective light neutrino mass matrix is given by

$$M_{\nu} = m_D M^{T^{-1}} \mu M^{-1} m_D^T.$$

Linear seesaw:

$$M_{\nu} = \begin{pmatrix} 0 & m_D & M_L \\ m_D^T & 0 & M \\ M_L^T & M^T & 0 \end{pmatrix}.$$
 et al., 1995

Light neutrino mass:

$$M_{\nu} = m_D (M_L M^{-1})^T + (M_L M^{-1}) m_D^T$$

 $\mathcal{O} \propto (LH)(LH)(H_uH_d)$ 







However:  $(HH^{\dagger})$  is a singlet under any symmetry. Thus:

Requires at least 2 Higgses, example:  $H_u$ ,  $H_d$ 

 $\Rightarrow$  Suppression by:  $\mu_{\phi} \langle H_u \rangle \langle H_d \rangle / m_{\phi}^2$  $\Rightarrow$  "Enough" if  $m_{\phi} \simeq 10^{14} \text{ GeV}$ 

### $\mathcal{O}_2 \propto LLLe^cH$

One more example, open d = 7:



#### Babu & Leung, 2001

Only few possible decompositions Cai et al., 2014

### $\mathcal{O}_2 \propto LLLe^cH$

One more example, open d = 7:



Babu & Leung, 2001

Only few possible decompositions Cai et al., 2014

Close using SM Yukawa interaction:



Zee, 1980

proto-type 1-loop neutrino mass model

"Zee-model"

 $m_{\nu} \Rightarrow d=5$  1-loop

### $m_{\nu} @ 1-loop and d = 5$

Bonnet et al., 2012

With 4-external legs and no self-energy diagrams, there is a total of 6 topologies:



All d = 5 1-loop neutrino mass models covered!

### $m_{\nu} @ 1-loop and d = 5$

Bonnet et al., 2012

With 4-external legs and no self-energy diagrams, there is a total of 6 topologies:



All d = 5 1-loop neutrino mass models covered!



Dark doublet model Ma, 2006 Kubo, Ma & Suematsu, 2006

> Zee, 1980 Zee model

Cheng & Li, 1980

Hall & Suzuki, 1984 R-parity violating SUSY trilinear loop

Ma, 1998

Hall & Suzuki, 1984 R-parity violating SUSY bilinear-trilinear loop

WIN 2014, 08/06/2015 - p.30/74



Dark doublet model Ma, 2006 Kubo, Ma & Suematsu, 2006

> Zee, 1980 Zee model

Cheng & Li, 1980

Hall & Suzuki, 1984 R-parity violating SUSY trilinear loop

Ma, 1998

Hall & Suzuki, 1984 R-parity violating SUSY bilinear-trilinear loop

WIN 2014, 08/06/2015 - p.31/74





Ma, 1998 Ma, 2006

Systematically:

| $\phi'$        | $\phi$           | $\psi$           |  |
|----------------|------------------|------------------|--|
| $1^S_{\alpha}$ | $3^S_{2+\alpha}$ | $2^F_{1+\alpha}$ |  |
| $2^S_{lpha}$   | $2^S_{2+lpha}$   | $1_{1+\alpha}^F$ |  |
| $2^S_{lpha}$   | $2^S_{2+\alpha}$ | $3^F_{1+lpha}$   |  |
| $3^S_{lpha}$   | $1_{2+\alpha}^S$ | $2^F_{1+\alpha}$ |  |
| $3^S_{lpha}$   | $3^S_{2+\alpha}$ | $2^F_{1+\alpha}$ |  |

 $\Leftarrow \text{ If } \alpha = -1 \text{ and} \\ \psi \text{ has a Majorana} \\ \text{mass } (\psi = N) \\ 1 \text{-loop correction to} \\ \text{type-l, unless } Z_2 \\ \text{symmetry forbids } v_{\phi} \\ \text{Dark Matter!}$ 







Ma, 1998 Ma, 2006

Systematically:

| $\phi'$        | $\phi$           | $\psi$           |
|----------------|------------------|------------------|
| $1^S_{\alpha}$ | $3^S_{2+\alpha}$ | $2^F_{1+\alpha}$ |
| $2^S_{\alpha}$ | $2^S_{2+\alpha}$ | $1_{1+\alpha}^F$ |
| $2^S_{lpha}$   | $2^S_{2+\alpha}$ | $3^F_{1+lpha}$   |
| $3^S_{lpha}$   | $1^S_{2+\alpha}$ | $2^F_{1+\alpha}$ |
| $3^S_{lpha}$   | $3^S_{2+\alpha}$ | $2^F_{1+\alpha}$ |

 $\Leftarrow \text{ If } \alpha = -1 \text{ and } \psi \text{ has} \\ \text{a Majorana mass } (\psi = \Sigma) \\ 1 \text{-loop correction to} \\ \text{type-III, unless } Z_2 \\ \text{symmetry forbids } v_{\phi} \\ \text{Dark Matter!} \end{cases}$ 



# T-4: Loop generated vertices

Bonnet et al., 2012



### $\mathcal{O}_9 \propto LLLe^cLe^c$

One example for d = 9:



Babu & Leung, 2001

$$S_{1,1,2} \to k^{++}$$
$$S_{1,1,1} \to h^{+}$$

### $\mathcal{O}_9 \propto LLLe^cLe^c$

One example for d = 9:



Babu & Leung, 2001

$$S_{1,1,2} \to k^{++}$$
$$S_{1,1,1} \to h^{+}$$

Close using SM Yukawa interaction:

"Cheng-Li-Babu-Zee" - model


#### $m_{\nu} @ 2\text{-loop and } d = 5$

Aristizabal et al, 2015



WIN 2014, 08/06/2015 - p.37/74

#### $m_{\nu} @ 2\text{-loop and } d = 5$

Aristizabal et al, 2015



WIN 2014, 08/06/2015 - p.38/74

 $m_{\nu} @ 2\text{-loop and } d = 5$ 

Only three types of genuine diagrams:



 $m_{\nu} @ 2\text{-loop and } d = 5$ 

Only three types of genuine diagrams:







PTBM 6 diagrams



4 diagrams



Complete lists "Recipes" (integrals, QNs, etc. etc.) in: Aristizabal et al., 2015



in total 10 diagrams

WIN 2014, 08/06/2015 - p.40/74

 $m_{\nu}$  @ 3-loop?

No systematic analysis, but several example models exist:



Krauss, Nasri & Trodden, 2002

Similar diagrams by: Aoki et al, 2008 & 2011 Culjac et al., 2015



Gustafsson et al, 2012

Similar (but scalar) diagram in:

Kajiyama et al., 2013 ( $T_7$  flavour model)

 $m_{\nu}$  @ 3-loop?

No systematic analysis, but several example models exist:



Krauss, Nasri & Trodden, 2002

Similar diagrams by: Aoki et al, 2008 & 2011 Culjac et al., 2015



Gustafsson et al, 2012

Similar (but scalar) diagram in:

Kajiyama et al., 2013 ( $T_7$  flavour model)

 $m_{\nu}$  @ 4-loop?

From d = 9 operator:

 $\mathcal{O}_{-} = \frac{1}{\Lambda_{\rm LNV}^5} e^c e^c u^c u^c \bar{d}^c \bar{d}^c$ 

#### $0\nu\beta\beta$ decay variant TII-5:

Bonnet et al., 2013



Gu, 2011

 $m_{
u} \simeq 10^{-8} \, {\rm eV}$ ... because d = 9 4-loop Needs (Quasi)-Dirac u's to explain oscillation data

A few more examples in: Helo et al., 2015

Only example!

#### III.

# 0 uetaeta decay, LNV and $m_{ u}$

### $0\nu\beta\beta$ decay

Amplitude for  $(Z, A) \rightarrow (Z \pm 2, A) + e^{\mp}e^{\mp}$  can be divided into:



Mass mechanism





"long-range"

"short-range"

Higher order:



### Black Box Theorem



Schechter & Valle, PRD 1982 Takasugi, PLB 1984

lf 0νββ is observed the neutrino is a Majorana particle!

 $\Rightarrow$  4-loop "butterfly" diagram:  $m_{\nu} \sim 10^{-24} \text{ eV}$ 

Duerr et al 2011

 $\Rightarrow$  Tree-level, 1-loop,  $\cdots$  4-loop possible ...

Can we determine if mass mechanism is dominant?

Could we determine which model dominant?

#### Tree-level topologies



#### Tree-level topologies





Examples:

RPV squark exchange:

LR symmetric model:





#### Bonnet et al., 2013

|         |                                          | Me                                                        | ediator $(Q_{\rm em}, SU(3))$                             | $(B)_c)$                                                  |
|---------|------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|
| #       | Decomposition                            | $S \text{ or } V_{\rho}$                                  | $\psi$                                                    | $S'$ or $V'_{\rho}$                                       |
| 1-i     | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | $(-1, 1 \oplus 8)$                                        |
| 1-ii-a  | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2, <b>1</b> )                                           |
| 1-ii-b  | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3, \overline{3})$                                    | (+2, <b>1</b> )                                           |
| 2-i-a   | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3,\overline{3})$                                     | $(+1/3, \overline{3})$                                    |
| 2-i-b   | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    |
| 2-ii-a  | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2/3, 3)                                                 |
| 2-ii-b  | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | (+2/3, 3)                                                 |
| 2-iii-a | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | $(-2/3,\overline{3})$                                     | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    |
| 2-iii-b | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ | $(-2/3,\overline{3})$                                     | $(-1/3, \mathbf{3_a} \oplus \mathbf{\overline{6_s}})$     | $(+1/3, \overline{3})$                                    |
| 3-i     | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |
| 3-ii    | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2, 1)                                                   |
| 3-iii   | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ | $(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$     | $(+4/3, \overline{3})$                                    | (+2, 1)                                                   |
| 4-i     | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | $(-2/3,\overline{3})$                                     | $(0, 1 \oplus 8)$                                         | (+2/3, 3)                                                 |
| 4-ii-a  | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2/3, 3)                                                 |
| 4-ii-b  | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+2/3, 3)                                                 |
| 5-i     | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (-1/3, 3)                                                 | $(0, 1 \oplus 8)$                                         | $(+1/3,\overline{3})$                                     |
| 5-ii-a  | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ | (-1/3, 3)                                                 | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |
| 5-ii-b  | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ | (-1/3, 3)                                                 | (-4/3, 3)                                                 | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |

18 decompositions in total

 $\times$  SFS, VFS and VFV

 $\times$  # of different chirality insertions  $P_L$  and  $P_R$ 

|         |                                          | Mediator $(Q_{\rm em}, SU(3)_c)$                          |                                                           |                                                           |  |  |  |
|---------|------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| #       | Decomposition                            | $S \text{ or } V_{\rho}$                                  | $\psi$                                                    | $S'$ or $V'_{\rho}$                                       |  |  |  |
| 1-i     | $(ar{u}d)(ar{e})(ar{e})(ar{u}d)$         | $(\mathbf{+1},1\oplus8)$                                  | $(0,1\oplus8)$                                            | $(-1, 1 \oplus 8)$                                        |  |  |  |
| 1-ii-a  | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2, <b>1</b> )                                           |  |  |  |
| 1-ii-b  | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3, \bar{3})$                                         | (+2, 1)                                                   |  |  |  |
| 2-i-a   | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3,\overline{3})$                                     | $(+1/3,\overline{3})$                                     |  |  |  |
| 2-i-b   | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | $(+1/3, \bar{3})$                                         |  |  |  |
| 2-ii-a  | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2/3, 3)                                                 |  |  |  |
| 2-ii-b  | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | (+2/3, 3)                                                 |  |  |  |
| 2-iii-a | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | $(-2/3, \overline{3})$                                    | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    |  |  |  |
| 2-iii-b | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ | $(-2/3, \overline{3})$                                    | $(-1/3, \mathbf{3_a} \oplus \overline{\mathbf{6_s}})$     | $(+1/3,\overline{3})$                                     |  |  |  |
| 3-i     | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |  |  |  |
| 3-ii    | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2, <b>1</b> )                                           |  |  |  |
| 3-iii   | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ | $(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$     | $(+4/3, \bar{3})$                                         | (+2, 1)                                                   |  |  |  |
| 4-i     | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | $(-2/3,\overline{3})$                                     | $(0, 1 \oplus 8)$                                         | (+2/3, 3)                                                 |  |  |  |
| 4-ii-a  | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2/3, 3)                                                 |  |  |  |
| 4-ii-b  | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+2/3, 3)                                                 |  |  |  |
| 5-i     | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (-1/3, 3)                                                 | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    |  |  |  |
| 5-ii-a  | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ | (-1/3, 3)                                                 | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |  |  |  |
| 5-ii-b  | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ | (-1/3, 3)                                                 | (-4/3, 3)                                                 | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |  |  |  |

 $\Leftarrow$  Mass mechanism

|                 |                                          | -                                                         |                                                           |                                                           |                                                               |
|-----------------|------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------|
| #               | Decomposition                            | $S \text{ or } V_{\rho}$                                  | $\psi$                                                    | $S'$ or $V'_{\rho}$                                       | RPV SUSY:                                                     |
| 1-i             | $(ar{u}d)(ar{e})(ar{e})(ar{u}d)$         | $(\mathbf{+1},1\oplus8)$                                  | $(0, 1 \oplus 8)$                                         | $(-1, 1 \oplus 8)$                                        | $\epsilon \tilde{e} - \chi - \tilde{e}$                       |
| 1-ii-a          | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2, <b>1</b> )                                           |                                                               |
| 1-ii-b          | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3, \bar{3})$                                         | (+2, <b>1</b> )                                           |                                                               |
| 2-i-a           | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3, \overline{3})$                                    | $(+1/3, \overline{3})$                                    | -                                                             |
| <b>2-i-</b> b   | $(ar{u}d)(ar{e})(d)(ar{u}ar{e})$         | $(\mathbf{+1},1\oplus8)$                                  | $(0,1\oplus8)$                                            | $(+\mathbf{1/3}, \overline{3})$                           | $\Leftarrow \tilde{e} - \chi - \tilde{d}$                     |
| 2-ii-a          | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2/3, 3)                                                 | ~ ~ ~                                                         |
| <b>2-ii-</b> b  | $(ar{u}d)(ar{e})(ar{u})(dar{e})$         | $(\mathbf{+1},1\oplus8)$                                  | $(0,1\oplus8)$                                            | (+2/3,3)                                                  | $\Leftarrow e - \chi - u$                                     |
| <b>2-iii-</b> a | (dar e)(ar u)(d)(ar uar e)               | $(-\mathbf{2/3},\overline{3})$                            | $(oldsymbol{0},oldsymbol{1}\oplusoldsymbol{8})$           | $(+\mathbf{1/3}, \overline{3})$                           | $\Leftarrow \tilde{u} - \chi/\tilde{g} - d$                   |
| 2-iii-b         | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ | $(-2/3,\overline{3})$                                     | $(-1/3, \mathbf{3_a} \oplus \mathbf{\overline{6_s}})$     | $(+1/3, \overline{3})$                                    |                                                               |
| 3-i             | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | -                                                             |
| 3-ii            | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2, <b>1</b> )                                           |                                                               |
| 3-iii           | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ | $(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$     | $(+4/3, \bar{3})$                                         | (+2, <b>1</b> )                                           |                                                               |
| 4-i             | $(dar{e})(ar{u})(ar{u})(dar{e})$         | $(-\mathbf{2/3},\overline{3})$                            | $(oldsymbol{0},oldsymbol{1}\oplusoldsymbol{8})$           | (+2/3,3)                                                  | $\tilde{u} \leftarrow \tilde{u} - \chi/\tilde{g} - \tilde{u}$ |
| 4-ii-a          | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2/3, 3)                                                 |                                                               |
| 4-ii-b          | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+2/3, 3)                                                 | ~                                                             |
| 5-i             | $(ar{u}ar{e})(d)(d)(ar{u}ar{e})$         | (-1/3,3)                                                  | $(oldsymbol{0},oldsymbol{1}\oplusoldsymbol{8})$           | $(+1/3,\overline{3})$                                     | $f \Leftarrow d - \chi/\tilde{g} - d$                         |
| 5-ii-a          | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ | (-1/3, 3)                                                 | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |                                                               |
| 5-ii-b          | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ | (-1/3, 3)                                                 | (-4/3, 3)                                                 | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | _                                                             |

|                |                                          | Me                                                        | :                                                         |                                                           |                 |
|----------------|------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------|
| #              | Decomposition                            | $S \text{ or } V_{\rho}$                                  | $\psi$                                                    | $S'$ or $V'_{\rho}$                                       |                 |
| 1-i            | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | $(+1, 1 \oplus 8)$                                        | $(0,1\oplus8)$                                            | $(-1, 1 \oplus 8)$                                        | Leptoquarks     |
| 1-ii-a         | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2, 1)                                                   |                 |
| 1-ii-b         | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3, \bar{3})$                                         | (+2, 1)                                                   |                 |
| 2-i-a          | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3,\overline{3})$                                     | $(+1/3,\overline{3})$                                     | -               |
| 2-i-b          | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    | ← Long-range LQ |
| 2-ii-a         | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2/3,3)                                                  |                 |
| 2-ii-b         | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | (+2/3,3)                                                  | ← Long-range LQ |
| 2-iii-a        | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | $(-\mathbf{2/3},\overline{3})$                            | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    |                 |
| 2-iii-b        | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ | $(-\mathbf{2/3},\overline{3})$                            | $(-1/3, \mathbf{3_a} \oplus \overline{\mathbf{6_s}})$     | $(+1/3, \overline{3})$                                    |                 |
| 3-i            | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | -               |
| 3-ii           | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2, 1)                                                   |                 |
| 3 <b>-</b> iii | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ | $(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$     | $(+4/3, \bar{3})$                                         | (+2, 1)                                                   |                 |
| 4-i            | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | $(-\mathbf{2/3},\overline{3})$                            | $(0, 1 \oplus 8)$                                         | (+2/3,3)                                                  | -               |
| 4-ii-a         | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2/3,3)                                                  |                 |
| 4-ii-b         | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+2/3,3)                                                  |                 |
| 5-i            | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (-1/3,3)                                                  | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    | -               |
| 5-ii-a         | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ | (-1/3,3)                                                  | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |                 |
| 5-ii-b         | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ | (-1/3,3)                                                  | (-4/3, 3)                                                 | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | _               |

|         |                                          | Mediator $(Q_{\rm em}, SU(3)_c)$                          |                                                           |                                                                    |  |  |  |
|---------|------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| #       | Decomposition                            | $S \text{ or } V_{\rho}$                                  | $\psi$                                                    | $S'$ or $V'_{\rho}$                                                |  |  |  |
| 1-i     | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | $(+1, 1 \oplus 8)$                                        | $(0,1\oplus8)$                                            | $(-1, 1 \oplus 8)$                                                 |  |  |  |
| 1-ii-a  | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2, <b>1</b> )                                                    |  |  |  |
| 1-ii-b  | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3, \bar{3})$                                         | (+2, 1)                                                            |  |  |  |
| 2-i-a   | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3,\overline{3})$                                     | $(+1/3, \overline{3})$                                             |  |  |  |
| 2-i-b   | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                             |  |  |  |
| 2-ii-a  | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | (+5/3, 3)                                                 | (+2/3, 3)                                                          |  |  |  |
| 2-ii-b  | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | (+2/3, 3)                                                          |  |  |  |
| 2-iii-a | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | $(-2/3,\overline{3})$                                     | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                             |  |  |  |
| 2-iii-b | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ | $(-2/3, \overline{3})$                                    | $(-1/3, \mathbf{3_a} \oplus \overline{\mathbf{6_s}})$     | $(+1/3, \overline{3})$                                             |  |  |  |
| 3-i     | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ | $(+4/3, \overline{f 3}_{f a}\oplus {f 6}_{f s})$          | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$          |  |  |  |
| 3-ii    | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2, 1)                                                            |  |  |  |
| 3-iii   | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ | $(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$     | $(+4/3, \bar{3})$                                         | (+2, 1)                                                            |  |  |  |
| 4-i     | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | $(-2/3,\overline{3})$                                     | $(0, 1 \oplus 8)$                                         | (+2/3, 3)                                                          |  |  |  |
| 4-ii-a  | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+5/3, 3)                                                 | (+2/3, 3)                                                          |  |  |  |
| 4-ii-b  | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+2/3, 3)                                                          |  |  |  |
| 5-i     | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (-1/3, 3)                                                 | $(0, 1 \oplus 8)$                                         | $(+1/3, \bar{3})$                                                  |  |  |  |
| 5-ii-a  | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ | (-1/3, 3)                                                 | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-\mathbf{2/3}, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |  |  |  |
| 5-ii-b  | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ | (-1/3, 3)                                                 | (-4/3, 3)                                                 | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$          |  |  |  |

**Di-quarks** 

|                |                                          | Mediator $(Q_{\rm em}, SU(3)_c)$                          |                                                           |                                                           |  |  |  |
|----------------|------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| #              | Decomposition                            | $S \text{ or } V_{\rho}$                                  | $\psi$                                                    | $S'$ or $V'_{\rho}$                                       |  |  |  |
| 1-i            | $(\bar{u}d)(\bar{e})(\bar{e})(\bar{u}d)$ | $(+1, 1 \oplus 8)$                                        | $(0,1\oplus8)$                                            | $(-1, 1 \oplus 8)$                                        |  |  |  |
| 1-ii-a         | $(\bar{u}d)(\bar{u})(d)(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+{f 5}/{f 3},{f 3})$                                    | (+2, 1)                                                   |  |  |  |
| 1-ii-b         | $(\bar{u}d)(d)(\bar{u})(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3,\overline{3})$                                     | (+2, 1)                                                   |  |  |  |
| 2-i-a          | $(\bar{u}d)(d)(\bar{e})(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+4/3,\overline{3})$                                     | $(+1/3,\overline{3})$                                     |  |  |  |
| 2-i-b          | $(\bar{u}d)(\bar{e})(d)(\bar{u}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    |  |  |  |
| 2-ii-a         | $(\bar{u}d)(\bar{u})(\bar{e})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+{f 5}/{f 3},{f 3})$                                    | (+2/3, 3)                                                 |  |  |  |
| 2-ii-b         | $(\bar{u}d)(\bar{e})(\bar{u})(d\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(0, 1 \oplus 8)$                                         | (+2/3, 3)                                                 |  |  |  |
| 2-iii-a        | $(d\bar{e})(\bar{u})(d)(\bar{u}\bar{e})$ | $(-2/3,\overline{3})$                                     | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    |  |  |  |
| 2-iii-b        | $(d\bar{e})(d)(\bar{u})(\bar{u}\bar{e})$ | $(-2/3, \overline{3})$                                    | $(-1/3, \mathbf{3_a} \oplus \overline{\mathbf{6_s}})$     | $(+1/3, \overline{3})$                                    |  |  |  |
| 3-i            | $(\bar{u}\bar{u})(\bar{e})(\bar{e})(dd)$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{f 3}_{f a}\oplus {f 6}_{f s})$          | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |  |  |  |
| 3-ii           | $(\bar{u}\bar{u})(d)(d)(\bar{e}\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+{f 5}/{f 3},{f 3})$                                    | (+2, 1)                                                   |  |  |  |
| 3 <b>-</b> iii | $(dd)(\bar{u})(\bar{u})(\bar{e}\bar{e})$ | $(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$     | $(+4/3,\overline{3})$                                     | (+2, <b>1</b> )                                           |  |  |  |
| 4-i            | $(d\bar{e})(\bar{u})(\bar{u})(d\bar{e})$ | $(-2/3,\overline{3})$                                     | $(0, 1 \oplus 8)$                                         | (+2/3, 3)                                                 |  |  |  |
| 4-ii-a         | $(\bar{u}\bar{u})(d)(\bar{e})(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+{f 5}/{f 3},{f 3})$                                    | (+2/3, 3)                                                 |  |  |  |
| 4-ii-b         | $(\bar{u}\bar{u})(\bar{e})(d)(d\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | (+2/3, 3)                                                 |  |  |  |
| 5-i            | $(\bar{u}\bar{e})(d)(d)(\bar{u}\bar{e})$ | (-1/3, 3)                                                 | $(0, 1 \oplus 8)$                                         | $(+1/3, \overline{3})$                                    |  |  |  |
| 5-ii-a         | $(\bar{u}\bar{e})(\bar{u})(\bar{e})(dd)$ | (-1/3, 3)                                                 | $(+1/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |  |  |  |
| 5-ii-b         | $(\bar{u}\bar{e})(\bar{e})(\bar{u})(dd)$ | (-1/3, 3)                                                 | (-4/3,3)                                                  | $(-2/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ |  |  |  |

Coloured fermions/ vector-like quarks

#### Bonnet et al., 2013

For completeness:

|   |                                        | _                                                         |                                              |                                                       |                                           |
|---|----------------------------------------|-----------------------------------------------------------|----------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| # | Decomposition                          | $S \text{ or } V_{\rho}$                                  | $S'$ or $V'_{\rho}$                          | $S''$ or $V''_{\rho}$                                 |                                           |
| 1 | $(\bar{u}d)(\bar{u}d)(\bar{e}\bar{e})$ | $(+1, 1 \oplus 8)$                                        | $(+1, 1 \oplus 8)$                           | (-2, 1)                                               | $\Leftarrow$ LR $\Delta^{}$ (Rizzo, 1982) |
| 2 | $(\bar{u}d)(\bar{u}\bar{e})(\bar{e}d)$ | $(+1, 1 \oplus 8)$                                        | (-1/3, 3)                                    | $(-2/3,\overline{3})$                                 | $\Leftarrow$ (New) LQ                     |
| 3 | $(\bar{u}\bar{u})(dd)(\bar{e}\bar{e})$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(+2/3, \mathbf{3_a} \oplus \overline{6_s})$ | (-2, <b>1</b> )                                       | $\Leftarrow$ (New) DQ                     |
| 4 | $(\bar{u}\bar{u})(\bar{e}d)(\bar{e}d)$ | $(+4/3, \overline{3}_{\mathbf{a}} \oplus 6_{\mathbf{s}})$ | $(-2/3, \overline{3})$                       | $(-2/3,\overline{3})$                                 | $\Leftarrow$ (New) LQ+DQ                  |
| 5 | $(\bar{u}\bar{e})(\bar{u}\bar{e})(dd)$ | (-1/3, 3)                                                 | (-1/3, 3)                                    | $(+2/3, \mathbf{3_a} \oplus \mathbf{\overline{6}_s})$ | _ ← PH. Gu, 2011 &                        |
|   |                                        |                                                           |                                              |                                                       | <br>Kohda et al., 2012                    |

 $\Rightarrow$  Note: All decomps contain at least one of the following:

$$S_{+1}$$
 - singly charged scalar (vector)  
 $S_{2/3}^{LQ}$ ,  $S_{1/3}^{LQ}$  - leptoquarks LHC!  
 $S_{2/3}^{DQ}$ ,  $S_{4/3}^{DQ}$  - "diquarks"

Only one example. BL# 11:

 $\mathcal{O}_{11} \propto LLQd^cQd^c$ 

Graphically:



Only one example. BL# 11:

Q

Open as T-II-1: Graphically:  $\mathbf{L}$  $\mathbf{L}$  $\mathbf{L}$  $\mathbf{d}^{\mathbf{c}}$  $\mathbf{d}^{\mathbf{c}}$  $\mathbf{Q}$ 

Q

 $\mathcal{O}_{11} \propto LLQd^cQd^c$ 

 $\mathbf{L}$  $|\mathbf{S}_{1,3,-1}|$  $\mathbf{d}^{\mathbf{c}}$  $\mathbf{S_{1,2,1/2}}$  $\mathbf{S}_{1,2,1/2}$ Q  $\mathbf{d}^{\mathbf{c}}$ 

Only one example. BL# 11:

 $\mathcal{O}_{11} \propto LLQd^cQd^c$ Graphically: Open as T-II-1:  $\mathbf{L}$  $\mathbf{L}$  $\mathbf{L}$  $\mathbf{d}^{\mathbf{c}}$  $\mathbf{d}^{\mathbf{c}}$  $\mathbf{S}_{1,3,-1}$  $\mathbf{Q}$  $\mathbf{S_{1,2,1/2}}$  $\mathbf{S_{1,2,1/2}}$ Q Q  $\mathbf{d}^{\mathbf{c}}$ O  $\mathbf{L}$  $\mathbf{L}$  $\Rightarrow$  Unless fine-tuned: 0
uetaeta decay  $\mid \mathbf{S_{1,3,-1}}$ dominated by  $m_{
u}$  $\langle {
m S_{1,2,1/2}} 
angle$  $--\langle \mathbf{S}_{1,2,1/2} \rangle$ Seesaw type-II

Only one example. BL# 11:

 $\mathcal{O}_{11} \propto LLQd^cQd^c$ 

Graphically:

Open as T-II-2:





Only one example. BL# 11:

 $\mathcal{O}_{11} \propto LLQd^cQd^c$ Graphically: Open as T-II-2:  $\mathbf{d}^{\mathbf{c}}$ Q Q  $\mathbf{d^{c}}$  $\mathbf{Q}$  $\mathbf{d}^{\mathbf{c}}$  $|\,\mathbf{S}_{1,2,1/2}$ Q  $d^{c}$  ${f S}_{3,1,-1/3}$  $\mathbf{S}_{ar{\mathbf{3}},\mathbf{2},-1/6}$  $\mathbf{L}$  $\mathbf{L}$  $\mathbf{L}$  $\mathbf{H}$ One loop: T1-ii  $\Rightarrow$  Unless fine-tuned: "Coloured  $0\nu\beta\beta$  decay dominated by  $m_{
u}$ Zee-model" Q  $\mathbf{d^{c}}$  $\mathbf{S_{3,1,-1/3}}$ I  $\mathbf{S}_{\mathbf{\bar{3}},\mathbf{2},-1/6}$  $\mathbf{L}$  $\mathbf{L}$ 

 $S_{1.2.1/2}$ 

WIN 2014, 08/06/2015 - p.60/74

Only one example. BL# 11:

 $\mathcal{O}_{11} \propto LLQd^cQd^c$ 

Graphically:

Open as T-II-4:





Only one example. BL# 11:

 $\mathcal{O}_{11} \propto LLQd^cQd^c$ 

Graphically:

Open as T-II-4:



 $\Rightarrow \text{Short-range} \\ 0\nu\beta\beta \text{ decay} \\ \text{and } m_{\nu} \\ \text{comparable!} \end{cases}$ 



### T-II: Loops versus Decomps

|                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 |                                        |                 |                           |                      |                                           |                                                                                                                     | Helo et al.,                                                                                                                                                     |
|-------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------|-----------------|---------------------------|----------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         | T-II   | # C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | p.                              | BL#                                    | S               | S'                        | S''                  | Diagram                                   | Add. Int.                                                                                                           | 2015                                                                                                                                                             |
|                         | 1      | $(\bar{u}d)(\bar{u})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\bar{e}\bar{e})$              | 11, 12, 14                             | $(1,2)_{+1/2}$  | $(1,2)_{+1/2}$            | $(1,3)_{-1}$         | type II                                   | $S_{13-1}HH$                                                                                                        | -                                                                                                                                                                |
| - · ·                   | 1      | $(ar{u}d)(ar{\imath}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(\bar{e}\bar{e})$              | 11, 12, 14                             | $(8,2)_{+1/2}$  | $(8,2)_{+1/2}$            | $(1,3)_{-1}$         | type II                                   | $S_{13-1}HH$                                                                                                        | $-$ SD $\ll$ $/m$ $>$                                                                                                                                            |
| Iree-level              | 3      | $(\bar{u}\bar{u})(a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ld)(\bar{e}\bar{e})$           | 11                                     | $(6,3)_{+1/3}$  | $(\bar{6},1)_{+2/3}$      | $(1,3)_{-1}$         | type II                                   | $S_{13-1}HH$                                                                                                        | $-$ SR $\ll \langle m_{\nu} \rangle$                                                                                                                             |
|                         | 3      | $(\bar{u}\bar{u})(a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $ld)(\bar{e}\bar{e})$           | 12                                     | $(6,1)_{+4/3}$  | $(\bar{6},3)_{-1/3}$      | $(1,3)_{-1}$         | type II                                   | $S_{13-1}HH$                                                                                                        | -                                                                                                                                                                |
| :                       | T-II # | Op.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BL                              | .# S                                   |                 |                           | " Dia                | gram                                      | Add. Int.                                                                                                           |                                                                                                                                                                  |
|                         | 2      | $(\bar{u}d)(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}$ | $d\bar{e}$ ) 11                 | , 14 (1,2)+                            | -1/2 (3,1)      | $-1/3$ ( $\bar{3},2$ )    | -1/6 Ti              | $\nu$ -1-ii $S_{\overline{3}2}^{\dagger}$ | $S_{31-1}^{\dagger}H^{\dagger}$                                                                                     |                                                                                                                                                                  |
| 1-loop                  | 2      | $(\bar{u}d)(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}$ | $d\bar{e}$ ) 11                 | , 14 (1,2)+                            | -1/2 (3,3)      | -1/3 (3,2)                | -1/6 T <i>i</i>      | $\nu$ -1-ii $S^{\dagger}_{\overline{3}2}$ | $\frac{2-\frac{1}{6}S_{33-\frac{1}{3}}^{\dagger}H^{\dagger}}{2-\frac{1}{6}S_{33-\frac{1}{3}}^{\dagger}H^{\dagger}}$ |                                                                                                                                                                  |
| d = 5                   | 2      | $(\bar{u}d)(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}$ | $d\bar{e}$ ) 11                 | , 14 (8,2) <sub>+</sub>                | -1/2 (3,1)      | $_{-1/3}$ ( $\bar{3},2$ ) | -1/6 Ti              | $\nu$ -1-ii $S^{\dagger}_{\bar{3}2}$      | $S_{2-\frac{1}{6}}^{\dagger}S_{31-\frac{1}{2}}^{\dagger}H^{\dagger}$                                                | $-3R \ll \langle m_{\nu} \rangle$                                                                                                                                |
|                         | 2      | $(\bar{u}d)(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}\bar{e})(\bar{u}$ | $d\bar{e}$ ) 11                 | , 14 (8,2) <sub>+</sub>                | -1/2 (3,3)      | $_{-1/3}$ ( $\bar{3},2$ ) | -1/6 Ti              | v-1-ii $S^{\dagger}_{ar{3}2}$             | $^{6}_{2-\frac{1}{6}}S^{\dagger}_{33-\frac{1}{3}}H^{\dagger}$                                                       |                                                                                                                                                                  |
| -                       |        | <br>T-II #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С                               | p. BL:                                 | # S             | <i>S'</i>                 | S'                   | " Diaa                                    | ram                                                                                                                 |                                                                                                                                                                  |
| 2-loop                  |        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\bar{u}\bar{u})(\bar{u})$     | $l\bar{e})(d\bar{e})$ 1                | $(6,3)_{\pm 1}$ | $(\bar{3},2)_{-1}$        | $(\bar{3},2)$        | -1/6 CLB                                  | Z-1                                                                                                                 | $SR \sim \langle m_{\mu\nu} \rangle$                                                                                                                             |
| d = 5                   |        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\bar{u}\bar{e})(\bar{i}$      | $(\bar{e})(dd)$ 1                      | $(3,1)_{-1}$    | $(3,1)_{-1}$              | $(\bar{6},1)$        | +2/3 CLB                                  | Z-1                                                                                                                 |                                                                                                                                                                  |
|                         |        | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(\bar{u}\bar{e})(\bar{\imath}$ | $(\bar{d}\bar{e})(dd)$ 1               | $(3,3)_{-1}$    | $(3,3)_{-1}$              | $(\bar{6},1)$        | $^{+2/3}$ CLB                             | Z-1                                                                                                                 |                                                                                                                                                                  |
| 2-1000                  | T-11 # | Op.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B                               | # S                                    | S'              | ' S'                      | " Dic                | Igram                                     | Add. Int.                                                                                                           |                                                                                                                                                                  |
| 21000                   | 2      | $(\bar{u}d)(\bar{u}\bar{e})($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dē) 19                          | , 20 (1, 2)_                           | +1/2 (3,1)      | $_{-1/3}$ (3,2)           | -1/6                 | (d) $S_{\bar{3}2}^{\dagger}$              | $-\frac{1}{2}S^{\dagger}_{31}-\frac{1}{2}H^{\dagger}$                                                               | $SR\simeq\langle m_{\nu} angle$                                                                                                                                  |
| d = 7                   | 2      | $(\bar{u}d)(\bar{u}\bar{e})($                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dē) 19                          | , 20 (8, 2)_                           | +1/2 (3,1)      | $_{-1/3}$ (3,2)           | -1/6                 | (d) $S_{\bar{3}2}^{\dagger}$              | $\frac{6}{-\frac{1}{6}}S^{\dagger}_{31-\frac{1}{3}}H^{\dagger}$                                                     |                                                                                                                                                                  |
|                         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T-II #                          | Op.                                    | BL #            | S                         | S'                   | <i>S''</i>                                |                                                                                                                     |                                                                                                                                                                  |
| $3 - \log d -$          | - 5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                               | $(\bar{u}\bar{u})(d\bar{e})(d\bar{e})$ | 20 (            | $(6,1)_{+4/3}$ (5)        | $(\bar{3},2)_{-7/6}$ | $(\bar{3},2)_{-1/6}$                      |                                                                                                                     | $\langle m_{\mu\nu} \rangle \ll SR$                                                                                                                              |
| $0^{-100}$ p $u^{-100}$ | - 0    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                               | $(\bar{u}\bar{e})(\bar{u}\bar{e})(dd)$ | 19 (            | $(3,1)_{-1/3}$ (          | $(3,1)_{-1/3}$       | $(\bar{6},1)_{+2/3}$                      |                                                                                                                     | $\langle \dots \rangle \rangle \langle \rangle $ |
|                         |        | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | T-II #                          | Op.                                    | BL #            | S                         | <i>S'</i>            | <i>S''</i>                                |                                                                                                                     |                                                                                                                                                                  |
| 4-loop $d =$            | - 9    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                               | $(\bar{u}\bar{u})(dd)(\bar{e}\bar{e})$ | - (             | $(6,1)_{+4/3}$ (          | $(\bar{6},1)_{+2/3}$ | $(1,1)_{-2}$                              |                                                                                                                     | $m \setminus \ll CD$                                                                                                                                             |
|                         | U      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5                               | $(\bar{u}\bar{e})(\bar{u}\bar{e})(dd)$ | - (,            | $(3,1)_{-1/3}$ (          | $(3,1)_{-1/3}$       | $(\bar{6},1)_{+2/3}$                      | V                                                                                                                   | ( <i>Ⅲν) ≪ 𝔅π</i><br>VIN 2014, 08/06/2015 – p.63/7                                                                                                               |

## Distinguish mechanisms?

Amplitude for  $(Z, A) \rightarrow (Z \pm 2, A) + e^{\mp}e^{\mp}$  can be divided into:







Mass mechanism

Compare with other experiments: Cosmology KATRIN? "long-range"

Angular correlations  $0\nu\beta^+/EC$  decays LHC?





#### Example: $W_R @ LHC$



Keung & Senjanovic, 1983

Signal:

Same-sign and opposite-sign di-lepton + jets, **no**  $\not H_T$ 

#### Example: $W_R @ LHC$



Keung & Senjanovic, 1983

Signal:

Same-sign and opposite-sign di-lepton + jets, **no**  $B_T$ 

#### Plot from: S.P. Das et al., PRD 86



 $\Rightarrow$  Assumes  $\mathcal{L}=30~{\rm fb}^{-1}$  at  $\sqrt{s}=14~{\rm TeV}$ 

WIN 2014, 08/06/2015 - p.67/74

#### Example: $W_R @ LHC$

 $\begin{array}{c} u \\ W_{R} \\ g_{R} \\ g_{R} \\ g_{R} \\ g_{R} \\ W_{R} \\ M^{c} \\ W_{R} \\ M^{*} \\ u \\ \overline{u} \end{array}$ 

CMS (and ATLAS) with  $\sqrt{s} = 8$  TeV: Already from run-I: stringent limits in the plane  $m_{W_R} - m_N$ Assumes:  $g_R = g_L$ !



 $m_{W_R}$  [TeV]

# CMS excess: arXiv:1407.3683



#### Note:

- $\Rightarrow$  excess only in ee final state
- $\Rightarrow$  only 1 out of 14 events is like-sign
- $\Rightarrow$  no excess is seen in  $m_{e_2jj}$

## Cross sections for $\sqrt{s} = 14$ TeV



 $\Rightarrow$  All 0
uetaeta decay SR contributions can be tested

 $\Rightarrow$  Number of  $e^-e^-$ -like and  $e^+e^+$ -like events differ, depending on scalar!

## Compare $0\nu\beta\beta$ and LHC

Helo et al, 2013



 $\Rightarrow$  cyan background:  $0\nu\beta\beta$  decay  $10^{25} - 10^{27}$  ys

⇒ Assumed upper limit on  $\sigma(pp \to X)$ :  $10^{-2}$  fb ⇒  $m_F = 1000$  GeV (realistic (?) case) ⇒ Full lines: Br=  $10^{-1}$ , dashed lines Br=  $10^{-2}$ 

# Leptogenesis

Sakharov's conditions:

(i) Baryon number violation(ii) C and CP violation(iii) departure from thermal equilibrium



(e) Tree



In Leptogenesis:

(i) Convert L to B through SM sphalerons

(ii) CP violation through interference tree  $\leftrightarrow$  1-loop

(iii) Lout of equilibrium via right-handed neutrino decay
## Leptogenesis and LHC

Deppisch et al., 2014

> See talk by: J Harz

blue lines washout factor  $\Gamma_W$  - Suppression of L  $\propto 10^{-\Gamma_W}$ 

Observation of LNV @ LHC implies: (High-scale) Leptogenesis is ruled out!

Loopholes???

(i) Resonant LG with  $m_N \ll m_X$ ? (ii) Hide LG in  $\tau$  's?



 $\sigma_{\rm LHC} = \sigma_{pp->l^{\pm}l^{\pm}+jj}$ 

## Conclusions

## $\Rightarrow$ Are neutrinos Majorana particles?

## A: Observe LNV!

- ⇒ What is the energy scale of LNV? Direct test: LHC? Or indirect: LFV?
- $\Rightarrow$  Can we understand flavour structure?
- $\Rightarrow$  Are neutrinos related to DM?
- $\Rightarrow$  Is there CPV in the lepton sector? Majorana phases?
- $\Rightarrow$  Can we predict CPV?
- $\Rightarrow$  Are neutrinos linked to the BAU?
- $\Rightarrow$  Are there more than 3 light neutrinos?
- $\Rightarrow$  Normal hierarchy or Inverted Hierarchy?
- $\Rightarrow$  Others ...