ISAPP 2011, MPIK Heidelberg "The Dark Side of the Universe" Dark Matter phenomenology

Thomas Schwetz-Mangold

13 July 2011

What is the Universe made of?

WMAP 7yr + BAO + H_0 : $\Omega_{\rm CDM} = 0.229 \pm 0.015$

The scale of galaxies and clusters of galaxies

- rotation curves
- gravitational lensing

bullet clusters

- virial theorem applied to galaxies and clusters
- X-rays from clusters of galaxies

⇒ Many independent observations are consistent with the hypothesis that the dominating gravitating component of the Universe cannot be the matter we know.

Introduction

We have no clue about DM properties ...

but there are good arguments that DM could be related to the "weak scale": \rightarrow Weakly Interacting Massive Particle (WIMP)

in my lecture I will concentrate on the WIMP hypothesis BUT: there are very well motivated non-WIMP candidates:

- ► axion lecture by G. Raffelt
- gravitino
- ► keV neutrinos lecture by M. Shaposhnikov
- ▶ "GIMP"

...

We have no clue about DM properties ...

but there are good arguments that DM could be related to the "weak scale": \rightarrow Weakly Interacting Massive Particle (WIMP)

in my lecture I will concentrate on the WIMP hypothesis BUT: there are very well motivated non-WIMP candidates:

- ► axion lecture by G. Raffelt
- gravitino
- ► keV neutrinos lecture by M. Shaposhnikov
- "GIMP"

…

Outline

The WIMP hypothesis

- thermal freeze-out of Dark Matter
- ▶ the WIMP miracle (or what is special about the "weak scale")

DM direct detection

- Phenomenology
- XENON100 and the WIMP hypothesis
- Hints for a DM signal and possible explanations

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

Boltzmann equation

distribution function: $f(\vec{p}, \vec{x}, t)$

the evolution is described by the Boltzmann equation:

L[*f*] for non-relativistic particles:

$$L[f] = \frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x_i} \dot{x}_i + \frac{\partial f}{\partial p_i} \dot{p}_i$$

(conservation of density in phase space)

relativistic generalization:

$$L[f] = p^{\mu} \frac{\partial f}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta} p^{\alpha} p^{\beta} \frac{\partial f}{\partial p^{\mu}}$$

Boltzmann equation

distribution function: $f(\vec{p}, \vec{x}, t)$

the evolution is described by the Boltzmann equation:

L[*f*] for non-relativistic particles:

$$L[f] = \frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x_i}\dot{x}_i + \frac{\partial f}{\partial p_i}\dot{p}_i$$

(conservation of density in phase space)

relativistic generalization:

$$L[f] = p^{\mu} \frac{\partial f}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta} p^{\alpha} p^{\beta} \frac{\partial f}{\partial p^{\mu}}$$

Boltzmann equation

distribution function: $f(\vec{p}, \vec{x}, t)$

the evolution is described by the Boltzmann equation:

L[f] for non-relativistic particles:

$$L[f] = \frac{df}{dt} = \frac{\partial f}{\partial t} + \frac{\partial f}{\partial x_i}\dot{x}_i + \frac{\partial f}{\partial p_i}\dot{p}_i$$

(conservation of density in phase space)

relativistic generalization:

$$L[f] = p^{\mu} \frac{\partial f}{\partial x^{\mu}} - \Gamma^{\mu}_{\alpha\beta} p^{\alpha} p^{\beta} \frac{\partial f}{\partial p^{\mu}}$$

$Boltzmann \Rightarrow rate equation$

Freedman-Robertson-Walker metric: $f(\vec{p}, \vec{x}, t) = f(|\vec{p}|, t)$

$$L[f] = E\frac{\partial f}{\partial t} - \frac{\dot{a}}{a}p^2\frac{\partial f}{\partial E}$$

with $E^2 = p^2 + m^2$ and $\dot{a}/a \equiv H$ expansion rate

evolution of the number density $n(t) = \frac{g}{(2\pi)^3} \int d^3 p f(p, t)$:

$$\frac{g}{(2\pi)^3} \int d^3 p \frac{L[f]}{E} = \dot{n} - H \frac{g}{(2\pi)^3} \int d^3 p \frac{p^2}{E} \frac{\partial f}{\partial E} = \dots$$
$$= \dot{n} + 3Hn = \frac{1}{a^3} \frac{d}{dt} (na^3)$$

(in absence of collisions: dilution with expansion)

$Boltzmann \Rightarrow rate equation$

Freedman-Robertson-Walker metric: $f(\vec{p}, \vec{x}, t) = f(|\vec{p}|, t)$

$$L[f] = E\frac{\partial f}{\partial t} - \frac{\dot{a}}{a}p^2\frac{\partial f}{\partial E}$$

with $E^2 = p^2 + m^2$ and $\dot{a}/a \equiv H$ expansion rate

evolution of the number density $n(t) = \frac{g}{(2\pi)^3} \int d^3p f(p, t)$:

$$\frac{g}{(2\pi)^3} \int d^3p \frac{L[f]}{E} = \dot{n} - H \frac{g}{(2\pi)^3} \int d^3p \frac{p^2}{E} \frac{\partial f}{\partial E} = \dots$$
$$= \dot{n} + 3Hn = \frac{1}{a^3} \frac{d}{dt} (na^3)$$

(in absence of collisions: dilution with expansion)

The collision operator

consider 12 \leftrightarrow 34 process:

$$C[f_1] = \frac{1}{2} \int d\pi_2 d\pi_3 d\pi_4 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \times \\ \sum_{\text{spins}} \left[|\mathcal{M}_{34 \to 12}|^2 f_3 f_4 (1 \pm f_1) (1 \pm f_2) - (12 \leftrightarrow 34) \right] \\ + C_{\text{elast}}[f_1]$$

with $d\pi \equiv \frac{d^3p}{(2\pi)^{3}2E}$

The collision operator

consider 12 \leftrightarrow 34 process:

$$C[f_1] = \frac{1}{2} \int d\pi_2 d\pi_3 d\pi_4 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \times \\\sum_{\text{spins}} \left[|\mathcal{M}_{34 \to 12}|^2 f_3 f_4 (1 \pm f_1) (1 \pm f_2) - (12 \leftrightarrow 34) \right] \\ + C_{\text{elast}}[f_1]$$

with $d\pi \equiv \frac{d^3p}{(2\pi)^3 2E}$

calculate
$$\frac{g}{(2\pi)^3}\int d^3p_1rac{C[f_1]}{E_1}$$

in order to obtain the rate equation for n

The collision operator

consider $12 \leftrightarrow 34$ process:

$$C[f_1] = \frac{1}{2} \int d\pi_2 d\pi_3 d\pi_4 (2\pi)^4 \delta^4 (p_1 + p_2 - p_3 - p_4) \times \\ \sum_{\text{spins}} \left[|\mathcal{M}_{34 \to 12}|^2 f_3 f_4 (1 \pm f_1) (1 \pm f_2) - (12 \leftrightarrow 34) \right] \\ + C_{\text{elast}} [f_1]$$

with $d\pi \equiv \frac{d^3p}{(2\pi)^{3}2E}$

- neglect statistical factors (FD,BE \rightarrow MB)
- ► assume $|\mathcal{M}_{34\to12}|^2 = |\mathcal{M}_{12\to34}|^2$ (satisfied for $\chi\bar{\chi} \leftrightarrow \psi\bar{\psi}$)
- ▶ assume that 34 are in kinetic + chemical equilibrium: $f_3 f_4 = f_3^{eq} f_4^{eq}$
- ► detailed balance: in equilibrium $\frac{d}{dt}(na^3) = 0 \Rightarrow f_3^{eq} f_4^{eq} = f_1^{eq} f_2^{eq}$
- ► 12 stay in kinetic equilibrium even after chemical equilibrium is lost T. Schwetz

Rate equation for density

define thermally averaged cross section times velocity:

$$\langle \sigma_{12} v \rangle \equiv \frac{1}{n_1^{\text{eq}} n_2^{\text{eq}}} \int g_1 \frac{d^3 p_1}{(2\pi)^3} g_2 \frac{d^3 p_2}{(2\pi)^3} f_1^{\text{eq}} f_2^{\text{eq}} \sigma v$$

$$v \equiv \frac{\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}}{E_1 E_2}$$

integrated Boltzmann equation becomes:

$$\dot{n}_1 + 3Hn_1 = \langle \sigma_{12} v \rangle \left(n_1^{\mathsf{eq}} n_2^{\mathsf{eq}} - n_1 n_2 \right)$$

consider self-conjugated particle $n_1 = n_2 \equiv n \ (\chi\chi \leftrightarrow X \Rightarrow \sigma_{12} \to \sigma_{ann})$:

$$\dot{n} + 3Hn = \langle \sigma_{\mathsf{ann}} v \rangle \left(n_{\mathsf{eq}}^2 - n^2 \right)$$

Rate equation for density

define thermally averaged cross section times velocity:

$$\langle \sigma_{12} v \rangle \equiv \frac{1}{n_1^{\text{eq}} n_2^{\text{eq}}} \int g_1 \frac{d^3 p_1}{(2\pi)^3} g_2 \frac{d^3 p_2}{(2\pi)^3} f_1^{\text{eq}} f_2^{\text{eq}} \sigma v$$

$$v \equiv \frac{\sqrt{(p_1 \cdot p_2)^2 - m_1^2 m_2^2}}{E_1 E_2}$$

integrated Boltzmann equation becomes:

$$\dot{n}_1 + 3Hn_1 = \langle \sigma_{12} v \rangle \left(n_1^{\mathsf{eq}} n_2^{\mathsf{eq}} - n_1 n_2 \right)$$

consider self-conjugated particle $n_1 = n_2 \equiv n \ (\chi \chi \leftrightarrow X \Rightarrow \sigma_{12} \to \sigma_{ann})$:

$$\dot{n} + 3Hn = \langle \sigma_{\mathsf{ann}} v \rangle \left(n_{\mathsf{eq}}^2 - n^2 \right)$$

Rescale by entropy density

re-write differential equation in terms of

$$Y \equiv \frac{n}{s}$$

by using entropy conservation in comoving volume: $a^3s = \text{const}$

$$\dot{Y} = -\langle \sigma_{\mathsf{ann}} v \rangle s \left(Y^2 - Y_{\mathsf{eq}}^2
ight)$$

(get rid of trivial exansion term)

Change variables

... from time to dimensionless temperature $x \equiv \frac{m}{T}$

 $g_{\text{eff}}, h_{\text{eff}}, g_*$: parametrize relativistic degrees of freedom (for const h_{eff} and all species at the same T: $g_{\text{eff}} = h_{\text{eff}} = g_*$)

Yield equation

$$\frac{dY}{dx} = -\sqrt{\frac{\pi g_*}{45G_N}} \frac{m}{x^2} \langle \sigma_{\mathsf{ann}} v \rangle \left(Y^2 - Y_{\mathsf{eq}}^2 \right)$$

consider
$$h_{\text{eff}} = \text{const}, \ \Gamma = n_{\text{eq}} \langle \sigma_{\text{ann}} v \rangle$$
: $\frac{x}{Y_{\text{eq}}} \frac{dY}{dx} = -\frac{\Gamma}{H} \left(\frac{Y^2}{Y_{\text{eq}}^2} - 1 \right)$

thermal freeze-out for $\Gamma \sim H$ at $x \simeq x_F$

T. Schwetz

DM yield at infinity

$$\frac{dY}{dx} = -\sqrt{\frac{\pi g_*}{45G_N}} \frac{m}{x^2} \langle \sigma_{\mathsf{ann}} v \rangle \left(Y^2 - Y_{\mathsf{eq}}^2 \right)$$

neglect Y_{eq} compared to Y for $x \gg x_F$

$$\frac{1}{Y_{\infty}} \approx \frac{1}{Y(x_F)} + \sqrt{\frac{\pi}{45G_N}} m \int_{x_F}^{\infty} dx \frac{\langle \sigma_{\mathsf{ann}} v \rangle}{x^2} \sqrt{g_*(x)}$$

neglect $1/Y(x_F)$ and assume $\langle \sigma_{\mathsf{ann}} v \rangle \approx \mathsf{const}$:

$$Y_{\infty} pprox \sqrt{rac{45 G_N}{\pi g_*(x_F)}} rac{x_F}{m} rac{1}{\langle \sigma_{\mathsf{ann}} v
angle}$$

 \Rightarrow large $\langle \sigma_{\sf ann} v \rangle$ give small DM yield

DM yield at infinity

$$\frac{dY}{dx} = -\sqrt{\frac{\pi g_*}{45G_N}} \frac{m}{x^2} \langle \sigma_{\mathsf{ann}} v \rangle \left(Y^2 - Y_{\mathsf{eq}}^2 \right)$$

neglect Y_{eq} compared to Y for $x \gg x_F$

$$rac{1}{Y_{\infty}} pprox rac{1}{Y(x_F)} + \sqrt{rac{\pi}{45G_N}} m \int_{x_F}^{\infty} dx rac{\langle \sigma_{\mathsf{ann}} v
angle}{x^2} \sqrt{g_*(x)}$$

neglect $1/Y(x_{F})$ and assume $\langle \sigma_{\mathsf{ann}} v \rangle pprox \mathsf{const:}$

$$Y_{\infty} pprox \sqrt{rac{45G_N}{\pi g_*(x_F)}} rac{x_F}{m} rac{1}{\langle \sigma_{\mathsf{ann}} v
angle}$$

 \Rightarrow large $\langle \sigma_{\mathsf{ann}} \mathbf{v} \rangle$ give small DM yield

Relic density estimate

$$\Omega h^2 = \frac{\rho_0 h^2}{\rho_{\rm crit}} = \frac{s_0 Y_\infty m h^2}{\rho_{\rm crit}}$$

 $s_0 = h_{
m eff}(x_0) rac{2\pi^2}{45} T_0^3 pprox 2890 \, {
m cm}^2, \
ho_{
m crit} pprox 1.05 imes 10^{-5} h^2 \, {
m GeV} \, {
m cm}^{-3}$

$$\Omega h^2 \simeq rac{3 imes 10^{-38} \, \mathrm{cm}^2}{\langle \sigma_{\mathrm{ann}} v \rangle} rac{x_F}{\sqrt{g_*(x_F)}}$$

for $m\sim 100$ GeV and $\langle\sigma_{\mathsf{ann}}v
angle\sim 10^{-36}\,\mathsf{cm}^2$:

 $x_F \simeq 20, \ T_F = rac{m}{x_F} \sim 5 \ \mathrm{GeV}, \ g_{\mathrm{eff}}(x_F) \simeq 80 - 100 \Rightarrow rac{x_F}{\sqrt{g_*(x_F)}} \simeq 2 - 3$

$$\Omega h^2 \simeq rac{10^{-37}\,{
m cm}^2}{\langle \sigma_{{
m ann}}\,v
angle}$$

Relic density estimate

$$\Omega h^2 = \frac{\rho_0 h^2}{\rho_{\rm crit}} = \frac{s_0 Y_\infty m h^2}{\rho_{\rm crit}}$$

 $s_0 = h_{
m eff}(x_0) rac{2\pi^2}{45} T_0^3 pprox 2890 \, {
m cm}^2, \
ho_{
m crit} pprox 1.05 imes 10^{-5} h^2 \, {
m GeV} \, \, {
m cm}^{-3}$

$$\Omega h^2 \simeq rac{3 imes 10^{-38} \, \mathrm{cm}^2}{\langle \sigma_{\mathrm{ann}} v \rangle} rac{x_F}{\sqrt{g_*(x_F)}}$$

for $m\sim 100$ GeV and $\langle \sigma_{\mathsf{ann}} \nu \rangle \sim 10^{-36}\,\mathsf{cm}^2$:

 $x_F \simeq 20, \ T_F = \frac{m}{x_F} \sim 5 \,\text{GeV}, \ g_{\text{eff}}(x_F) \simeq 80 - 100 \Rightarrow \frac{x_F}{\sqrt{g_*(x_F)}} \simeq 2 - 3$

$$\Omega h^2 \simeq \frac{10^{-37}\,\mathrm{cm}^2}{\langle \sigma_{\mathrm{ann}} v \rangle}$$

Thermally averaged cross section

remember:
$$\langle \sigma_{ann} v \rangle \equiv \frac{1}{n_1^{eq} n_2^{eq}} \int g_1 \frac{d^3 p_1}{(2\pi)^3} g_2 \frac{d^3 p_2}{(2\pi)^3} f_1^{eq} f_2^{eq} \sigma v$$

assume Maxwell-Boltzmann distribution:

$$\langle \sigma_{\rm ann} v \rangle = \frac{\int d^3 p_1 d^3 p_2 \, e^{-E_1/T} e^{-E_2/T} \, \sigma v}{\int d^3 p_1 d^3 p_2 \, e^{-E_1/T} e^{-E_2/T}}$$

Thermally averaged cross section

remember:
$$\langle \sigma_{ann} v \rangle \equiv \frac{1}{n_1^{eq} n_2^{eq}} \int g_1 \frac{d^3 p_1}{(2\pi)^3} g_2 \frac{d^3 p_2}{(2\pi)^3} f_1^{eq} f_2^{eq} \sigma v$$

assume Maxwell-Boltzmann distribution:

$$\langle \sigma_{\rm ann} v \rangle = \frac{\int d^3 p_1 d^3 p_2 \, e^{-E_1/T} e^{-E_2/T} \, \sigma v}{\int d^3 p_1 d^3 p_2 \, e^{-E_1/T} e^{-E_2/T}}$$

Gondolo, Gelmini, Nucl. Phys. B 360 (1991) 145

$$\langle \sigma_{\mathsf{ann}} v \rangle = \frac{1}{8m^4 T K_2^2(x)} \int_{4m^2}^{\infty} ds \, \sigma(s - 4m^2) \sqrt{s} K_1\left(\frac{\sqrt{s}}{T}\right)$$

with the modified Bessel functions

$$K_1(x) = x \int_1^\infty dt \ e^{-xt} \sqrt{t^2 - 1}$$

 $K_2(x) = x \int_1^\infty dt \ e^{-xt} t \sqrt{t^2 - 1}$

T. Schwetz

Thermally averaged cross section

remember:
$$\langle \sigma_{ann} v \rangle \equiv \frac{1}{n_1^{eq} n_2^{eq}} \int g_1 \frac{d^3 p_1}{(2\pi)^3} g_2 \frac{d^3 p_2}{(2\pi)^3} f_1^{eq} f_2^{eq} \sigma v$$

assume Maxwell-Boltzmann distribution:

$$\langle \sigma_{\rm ann} v \rangle = \frac{\int d^3 p_1 d^3 p_2 \, e^{-E_1/T} e^{-E_2/T} \, \sigma v}{\int d^3 p_1 d^3 p_2 \, e^{-E_1/T} e^{-E_2/T}}$$

 $x_F \sim 20$ non-relativistic expansion: $\sigma v \approx a + bv^2$

$$\langle \sigma_{\mathsf{ann}} v \rangle pprox a + b \langle v^2
angle pprox a + rac{6b}{x}$$

replace $\langle \sigma_{ann} v \rangle$ in the relic density estimate by $a + 3b/x_F$

Expansion in v is not accurate in the following cases:

Griest, Seckel, 1991

• close to an s-channel resonance $(2m_{\chi} \approx m_{\phi})$:

$$\sigma v \propto rac{1}{(s-m_{\phi}^2)^2}\,, \ \ \ s=(E_{1{
m cm}}+E_{2{
m cm}})^2pprox 4m_{\chi}^2(1+v^2)$$

▶ close to thresholds of annihilation channels $\chi \chi \rightarrow XX$ with $m_{\chi} \approx m_X$:

$$\sigma v \propto \sqrt{s - 4m_X^2}$$

 in the presence of other particles close in mass, which participate in the annihilations ("co-annihilations")

 $\chi_1\chi_1 \leftrightarrow XX , \quad \chi_1\chi_2 \leftrightarrow XX' , \quad \chi_2\chi_2 \leftrightarrow XX$

Expansion in v is not accurate in the following cases:

Griest, Seckel, 1991

• close to an s-channel resonance $(2m_\chi \approx m_\phi)$:

▶ close to thresholds of annihilation channels $\chi \chi \rightarrow XX$ with $m_{\chi} \approx m_X$:

$$\sigma v \propto \sqrt{s - 4m_X^2}$$

 in the presence of other particles close in mass, which participate in the annihilations ("co-annihilations")

 $\chi_1\chi_1 \leftrightarrow XX , \quad \chi_1\chi_2 \leftrightarrow XX' , \quad \chi_2\chi_2 \leftrightarrow XX$

Expansion in v is not accurate in the following cases:

Griest, Seckel, 1991

• close to an s-channel resonance $(2m_{\chi} \approx m_{\phi})$:

$$\sigma v \propto rac{1}{(s-m_{\phi}^2)^2}\,, \ \ \ s=(E_{1{
m cm}}+E_{2{
m cm}})^2pprox 4m_{\chi}^2(1+v^2)$$

▶ close to thresholds of annihilation channels $\chi \chi \rightarrow XX$ with $m_{\chi} \approx m_X$:

$$\sigma v \propto \sqrt{s - 4m_X^2}$$

 in the presence of other particles close in mass, which participate in the annihilations ("co-annihilations")

$$\chi_1\chi_1 \leftrightarrow XX , \quad \chi_1\chi_2 \leftrightarrow XX' , \quad \chi_2\chi_2 \leftrightarrow XX$$

 For accurate relic density calculation use the Gondolo, Gelmini integral for the thermally averaged cross section and solve the rate equation numerically

Public codes: micrOMEGAs, Dark SUSY

Classic papers:

- B. W. Lee and S. Weinberg, "Cosmological lower bound on heavy-neutrino masses," Phys. Rev. Lett. 39 (1977) 165.
- J. Bernstein, L. S. Brown, G. Feinberg, "The Cosmological Heavy Neutrino Problem Revisited," Phys. Rev. D32, 3261 (1985).
- R. J. Scherrer, M. S. Turner, "On the Relic, Cosmic Abundance of Stable Weakly Interacting Massive Particles," Phys. Rev. D33, 1585 (1986).

Classic textbook:

► Kolb, Turner, The Early Universe.

Accurate and pedagogic discussion:

P. Gondolo and G. Gelmini, "Cosmic abundances of stable particles: Improved analysis," Nucl. Phys. B 360 (1991) 145.

Exceptions and co-annihilations:

- ► K. Griest and D. Seckel, "Three exceptions in the calculation of relic abundances," Phys. Rev. D 43 (1991) 3191.
- J. Edsjo and P. Gondolo, "Neutralino Relic Density including Coannihilations," Phys. Rev. D 56 (1997) 1879 [hep-ph/9704361].

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

The "WIMP miracle"

$$\Omega h^2 \simeq rac{10^{-37}\,{
m cm}^2}{\langle\sigma_{{
m ann}}\, v
angle} = 0.1126\pm 0.0036\, {
m [wmap]}$$

need $\sigma_{ann} \nu \sim 10^{-36} \, {\rm cm}^2 = 1 \, {\rm pb}$ to obtain correct relic abundance

"typical" cross section for particles at the weak scale:

 $\Lambda_{
m weak} \sim \langle H
angle = 250 \,\, {
m GeV}$

s-wave annihilations of a particle χ due to mediator ϕ :

$$\langle \sigma_{\mathrm{annih}} v
angle \sim \left\{ egin{array}{c} rac{g^4}{\pi} rac{m_\chi^2}{m_\phi^4} \simeq 10^{-36} \mathrm{cm}^2 \, g^4 \left(rac{m_\chi}{100 \, \mathrm{GeV}}
ight)^2 \left(rac{1 \, \mathrm{TeV}}{m_\phi}
ight)^4 & m_\phi \gg m_\chi \ rac{g^4}{16 \pi m_\chi^2} \simeq 10^{-36} \mathrm{cm}^2 \, \left(rac{g}{0.3}
ight)^4 \left(rac{200 \, \mathrm{GeV}}{m_\chi}
ight)^2 & m_\phi \ll m_\chi \end{array}
ight.$$

The "WIMP miracle"

$$\Omega h^2 \simeq rac{10^{-37}\,{
m cm}^2}{\langle\sigma_{{
m ann}}\, v
angle} = 0.1126\pm 0.0036\,{
m [wmap]}$$

need $\sigma_{ann} \nu \sim 10^{-36} \, {\rm cm}^2 = 1 \, {\rm pb}$ to obtain correct relic abundance

"typical" cross section for particles at the weak scale:

 $\Lambda_{
m weak} \sim \langle H
angle = 250 \,\, {
m GeV}$

s-wave annihilations of a particle χ due to mediator ϕ :

$$\left\langle \sigma_{\mathrm{annih}} v \right\rangle \sim \begin{cases} \frac{g^4}{\pi} \frac{m_{\chi}^2}{m_{\phi}^4} \simeq 10^{-36} \mathrm{cm}^2 \, g^4 \left(\frac{m_{\chi}}{100 \, \mathrm{GeV}}\right)^2 \left(\frac{1 \, \mathrm{TeV}}{m_{\phi}}\right)^4 & m_{\phi} \gg m_{\chi} \\ \frac{g^4}{16 \pi m_{\chi}^2} \simeq 10^{-36} \mathrm{cm}^2 \, \left(\frac{g}{0.3}\right)^4 \left(\frac{200 \, \mathrm{GeV}}{m_{\chi}}\right)^2 & m_{\phi} \ll m_{\chi} \end{cases}$$
MSSM neutralino annihilation

G. Jungman, M. Kamionkowski, K. Griest, "Supersymmetric Dark Matter" Phys. Rept. 267 (1996) 195-373

CMSSM relic density constraint

• $\Omega_{DM} = 23\% \pm 4\%$ stringently constrains models

• Assuming standard Big Bang, cosmology excludes many possibilities, favors certain regions

 m_0 : universal soft SUSY breaking scalar mass @ GUT scale $M_{1/2}$: universal gaugino mass @ GUT scale

J. Feng @ COSMO 09

see talk by A. Masiero

Relic density constraint

$$\Omega h^2 \simeq rac{10^{-37}\,{
m cm}^2}{\langle\sigma_{{
m ann}}\, v
angle} = 0.1126\pm 0.0036\,{
m [wmap]}$$

the requirement to obtain the correct relic density by thermal freeze out provides a stringent constraint on any model

BUT:

- ► under-abundant thermal DM ((\(\sigma_{\mathcal{ann}}\nu\)) too large): non-thermal production, additional DM component,
- over-abundant thermal DM ((σ_{ann}ν) too small): late entropy production, ...

What's so special about the "weak scale"?

The WIMP miracle

What's so special about the "weak scale"?

What's so special about the "weak scale"?

We expect new physics to show up at the weak scale:

SM is an effective theory only up to some high scale Λ loop correction to the Higgs mass:

$$\delta m_H^2 = \frac{3\Lambda^2}{8\pi\langle H\rangle} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) \sim -(0.23\Lambda)^2$$

tuning of $(m_H)_0$ against $\delta m_H \rightarrow$ "hierarchy problem"

 \Rightarrow introduce new physics at $\Lambda \sim TeV$ to cancel divergences (SUSY, extra dimension, technicolor,...)

lecture by G. Servant

What's so special about the "weak scale"?

We expect new physics to show up at the weak scale:

SM is an effective theory only up to some high scale Λ loop correction to the Higgs mass:

$$\delta m_H^2 = \frac{3\Lambda^2}{8\pi\langle H\rangle} (2m_W^2 + m_Z^2 + m_H^2 - 4m_t^2) \sim -(0.23\Lambda)^2$$

tuning of $(m_H)_0$ against $\delta m_H \rightarrow$ "hierarchy problem"

 \Rightarrow introduce new physics at $\Lambda \sim TeV$ to cancel divergences (SUSY, extra dimension, technicolor,...)

lecture by G. Servant

BUT: the new physics has to be "special":

- ▶ not seen at LEP/TeVatron (EWPT, direct searches) "little hierarchy" (100 GeV ↔ 10 TeV)
- no new flavor violating processes
- proton lifetime

introduce "parity" to protect the Standard Model: new particles odd, SM particles even \Rightarrow

lightest of the new physics particles becomes stable \rightarrow potential DM candidate

BUT: the new physics has to be "special":

- ▶ not seen at LEP/TeVatron (EWPT, direct searches) "little hierarchy" (100 GeV ↔ 10 TeV)
- no new flavor violating processes
- proton lifetime

introduce "parity" to protect the Standard Model: new particles odd, SM particles even \Rightarrow

lightest of the new physics particles becomes stable \rightarrow potential DM candidate

- introduce new physics model to solve the hierarchy problem and get a DM candidate as "extra bonus"
 SUSY, new dimensions, Little Higgs, Technicolor/composite Higgs,...
- just introduce new particles at the TeV scale to get a WIMP scalar singlet, inert doublet, minimal DM, hidden sector models,...

G. Servant

- introduce new physics model to solve the hierarchy problem and get a DM candidate as "extra bonus"
 SUSY, new dimensions, Little Higgs, Technicolor/composite Higgs,...
- just introduce new particles at the TeV scale to get a WIMP scalar singlet, inert doublet, minimal DM, hidden sector models,...

G. Servant

indirect detection

PAMELA, FERMI, AMS-II, IceCube, HESS, ... talks by C. de los Heros, M. Cirelli

indirect detection

PAMELA, FERMI, AMS-II, IceCube, HESS, ... talks by C. de los Heros, M. Cirelli

colliders

LHC at CERN talk by T. Plehn

indirect detection

PAMELA, FERMI, AMS-II, IceCube, HESS, ... talks by C. de los Heros, M. Cirelli

colliders

LHC at CERN talk by T. Plehn

direct detection

XENON, LUX, CDMS, CRESST, DEAP, COUPP, EURECA,... talk by J. Jochum

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

Dark Matter direct detection

Dark Matter in a Milkyway-like Galaxy

Via Lactea N-body DM simulation Diemand, Kuhlen, Madau, astro-ph/0611370

see talk by V. Springel

T. Schwetz

Local Dark Matter density

"standard halo model":

local DM density: $ho_{\chi} pprox 0.389 \pm 0.025 \, {
m GeV} \, {
m cm}^{-3}$ Catena, Ullio, 0907.0018

Maxwellian velocity distribution (in halo rest frame)

$$f_{\rm gal}(\vec{v}) pprox \left\{ egin{array}{ll} N \exp\left(-v^2/ar{v}^2
ight) & v < v_{
m esc} \ 0 & v > v_{
m esc} \end{array}
ight.$$

with $\bar{\nu}\simeq 220$ km/s and $\nu_{\rm esc}\simeq 600$ km/s

Local Dark Matter density

"standard halo model":

local DM density: $ho_{\chi} pprox 0.389 \pm 0.025 \, {
m GeV} \, {
m cm}^{-3}$ Catena, Ullio, 0907.0018

Maxwellian velocity distribution (in halo rest frame)

$$f_{
m gal}(ec{v}) pprox \left\{ egin{array}{cc} N \exp\left(-v^2/ar{v}^2
ight) & v < v_{
m esc} \ 0 & v > v_{
m esc} \end{array}
ight.$$

with $ar{v}\simeq$ 220 km/s and $v_{\rm esc}\simeq$ 600 km/s

$$\Rightarrow \text{ local DM flux: } \phi_{\chi} \sim 10^5 \text{ cm}^{-2} \text{s}^{-1} \left(\frac{100 \text{ GeV}}{m_{\chi}}\right) \left(\frac{\rho_{\chi}}{0.4 \text{ GeV cm}^{-3}}\right)$$

solar neutrinos: $\phi_{
u}$ ~ 6 imes 10¹⁰ cm⁻²s⁻¹

DM direct detection

assuming DM has non-gravitational interactions ("WIMP") look for recoil of DM-nucleus scattering M. Goodman, E. Witten, PRD 1985

VOLUME 31, NUMBER 12

15 JUNE 1985

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^{\circ}$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^{2}$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

DM direct detection

colliding a ~ 100 GeV DM particle with a ~ 100 GeV nucleus DM velocity: $\nu \sim 10^{-3} c \Rightarrow$ non-relativistic

recoil energy:
$$E_R = \frac{2\mu^2 v^2}{m_A} \cos^2 \theta_{\mathsf{lab}} \sim 10 \, \mathrm{keV}$$

counts / day / kg detector mass / keV recoil energy E_R :

$$rac{dN}{dE_R}(t) = rac{1}{m_A} rac{
ho_\chi}{m_\chi} \int_{v > v_{
m min}} d^3 v \, rac{d\sigma}{dE_R} \, v \, f_\oplus(ec v,t)$$

 $\begin{array}{c} \rho_{\chi} \\ m_{A} \\ v_{\min} \end{array}$

DM energy density, default pprox 0.3 GeV cm⁻³ nass of the target nucleus with mass number A ninimal DM velocity required to produce recoil energy E_R

elastic scattering:
$$v_{
m min}=\sqrt{rac{m_A E_R}{2\mu^2}}\,, \quad \mu=rac{m_\chi m_A}{m_\chi+m_A}$$

T. Schwetz

DM direct detection

colliding a ~ 100 GeV DM particle with a ~ 100 GeV nucleus DM velocity: $\nu \sim 10^{-3} c \Rightarrow$ non-relativistic

recoil energy:
$$E_R = \frac{2\mu^2 v^2}{m_A} \cos^2 \theta_{\mathsf{lab}} \sim 10 \, \mathrm{keV}$$

counts / day / kg detector mass / keV recoil energy E_R :

$$\frac{dN}{dE_R}(t) = \frac{1}{m_A} \frac{\rho_{\chi}}{m_{\chi}} \int_{v > v_{\min}} d^3 v \, \frac{d\sigma}{dE_R} \, v \, f_{\oplus}(\vec{v}, t)$$

 $\begin{array}{ll} \rho_{\chi} & \text{DM energy density, default} \approx 0.3 \ \text{GeV cm}^{-3} \\ m_{A}: & \text{mass of the target nucleus with mass number } A \\ v_{\min}: & \text{minimal DM velocity required to produce recoil energy } E_{R} \end{array}$

elastic scattering:
$$v_{\min} = \sqrt{rac{m_A E_R}{2\mu^2}}\,, \quad \mu = rac{m_\chi m_A}{m_\chi + m_A}$$

DM velocity distribution

in Earth rest frame $f_{\oplus} \rightarrow$ Galilei trafo from galaxy rest frame f_{gal} :

 $f_{\oplus}(\vec{v},t) = f_{\text{gal}}(\vec{v} + \vec{v}_{\odot} + \vec{v}_{\oplus}(t)) \quad f_{\text{gal}}(\vec{v}) \approx \begin{cases} N \exp\left(-v^2/\bar{v}^2\right) & v < v_{\text{esc}} \\ 0 & v > v_{\text{esc}} \end{cases}$

 $\bar{v} \simeq 220 \,\mathrm{km/s}$ $v_{\mathrm{esc}} \simeq 550 \,\mathrm{km/s}$ sun velocity: $\vec{v}_{\odot} = (0, 220, 0) + (10, 13, 7) \, \text{km/s}$ earth velocity: $\vec{v}_{\oplus}(t)$ with $v_{\oplus} \approx 30$ km/s

$$\frac{dN}{dE_R}(t) = \frac{1}{m_A} \frac{\rho_{\chi}}{m_{\chi}} \int_{v > v_{\min}} d^3 v \, \frac{d\sigma}{dE_R} \, v \, f_{\oplus}(\vec{v}, t)$$

differential cross section

$$\frac{d\sigma}{dE_R} = \frac{1}{32\pi} \frac{|\mathcal{M}|^2}{m_A m_\chi^2 v^2}$$

in many interesting cases $\overline{|\mathcal{M}|^2}$ is constant (indep of v) \Rightarrow

$$\eta(E_R,t) = \int_{v > v_{\min}(E_R)} d^3v \, \frac{f_{\oplus}(\vec{v},t)}{v}$$

$$\int_{v>v_{\min}} d^3v \, \frac{f_{\oplus}(\vec{v},t)}{v}$$

$$\eta(E_R,t) \propto rac{1}{v_{
m obs}(t)} \int_{v_{
m min}(E_R)}^{\infty} dv \left[e^{-\left(rac{v-v_{
m obs}(t)}{ ilde{v}}
ight)^2} - e^{-\left(rac{v+v_{
m obs}(t)}{ ilde{v}}
ight)^2}
ight]$$

DM nucleon scattering cross section

assume effective interaction of DM with SM \Rightarrow Example: fermionic DM

$$\mathcal{L}_{ ext{eff}} = rac{1}{\Lambda^2} \left(ar{\chi} \mathsf{\Gamma}_{ ext{dark}} \chi
ight) \left(ar{\psi} \mathsf{\Gamma}_{ ext{vis}} \psi
ight)$$

calculate $\langle N | \bar{\psi} \Gamma_{vis} \psi | N \rangle \Rightarrow$ match to nucleus level (form factors) \Rightarrow non-rel limit of DM current

DM nucleon scattering cross section

assume effective interaction of DM with SM \Rightarrow Example: fermionic DM

$$\mathcal{L}_{ ext{eff}} = rac{1}{\Lambda^2} \left(ar{\chi} \mathsf{\Gamma}_{ ext{dark}} \chi
ight) \left(ar{\psi} \mathsf{\Gamma}_{ ext{vis}} \psi
ight)$$

 $\begin{array}{l} \mbox{calculate } \langle \textit{\textit{N}} | \bar{\psi} \Gamma_{\rm vis} \psi | \textit{\textit{N}} \rangle \Rightarrow \\ \mbox{match to nucleus level (form factors)} \Rightarrow \\ \mbox{non-rel limit of DM current} \end{array}$

- $(S \otimes S), (V \otimes V)$: spin-independent $\Rightarrow A^2$ enhancement
- $(A \otimes A), (T \otimes T)$: spin-dependent \Rightarrow unpaired *n* or *p*
- other combinations are suppressed by $\mathcal{O}(q^2/m_N^2, v^2) \sim 10^{-6}$

e.g., A. Kurylov, M. Kamionkowski, hep-ph/0307185

applies also for scalar/vector $\mathsf{D}\mathsf{M}$

T. Schwetz

Going from quark level to nucleon level example: consider quark operator $G_q \bar{q} q \bar{\chi} \chi$ (SI interact.) \rightarrow eff. coupling to nucleon N = p, n: $f_N = \sum_q G_q \langle N | \bar{q} q | N \rangle$

can relate $\langle N | \bar{q}q | N \rangle$ to measurable/calculable quantities:

 $\frac{m_u}{m_d}, \quad \frac{m_s}{m_d}, \quad \sigma_{\pi N} = \frac{m_u + m_d}{2} (\langle \bar{u}u \rangle + \langle \bar{d}d \rangle), \quad \frac{\sigma_0}{\sigma_{\pi N}} = \frac{\langle \bar{u}u \rangle + \langle dd \rangle - 2\langle \bar{s}s \rangle}{\langle \bar{u}u \rangle + \langle \bar{d}d \rangle}$ $f_N = \sum_{q=u,s,d} G_q \frac{m_N}{m_q} \xi_q^N + \frac{2}{27} \left(1 - \sum_{q=u,s,d} \xi_q^N \right) \sum_{q=c,b,t} G_q \frac{m_N}{m_q}$

$$\begin{split} \xi^p_d &\approx 0.033 \,, \quad \xi^p_u &\approx 0.023 \,, \quad \xi^p_s &\approx 0.26 \\ \xi^n_d &\approx 0.042 \,, \quad \xi^n_u &\approx 0.018 \,, \quad \xi^n_s &\approx 0.26 \end{split}$$

e.g., Ellis, Olive, Savage, 0801.3656

Going from quark level to nucleon level

example: consider quark operator $G_q \bar{q} q \bar{\chi} \chi$ (SI interact.) \rightarrow

eff. coupling to nucleon N = p, n: $f_N = \sum_q G_q \langle N | \bar{q}q | N \rangle$

can relate $\langle N | \bar{q}q | N \rangle$ to measurable/calculable quantities:

 $\frac{m_u}{m_d}, \quad \frac{m_s}{m_d}, \quad \sigma_{\pi N} = \frac{m_u + m_d}{2} (\langle \bar{u}u \rangle + \langle \bar{d}d \rangle), \quad \frac{\sigma_0}{\sigma_{\pi N}} = \frac{\langle \bar{u}u \rangle + \langle \bar{d}d \rangle - 2 \langle \bar{s}s \rangle}{\langle \bar{u}u \rangle + \langle \bar{d}d \rangle}$

$$f_N = \sum_{q=u,s,d} G_q \frac{m_N}{m_q} \xi_q^N + \frac{2}{27} \left(1 - \sum_{q=u,s,d} \xi_q^N \right) \sum_{q=c,b,t} G_q \frac{m_N}{m_q}$$

$$\begin{aligned} \xi_d^p &\approx 0.033 \,, \quad \xi_u^p &\approx 0.023 \,, \quad \xi_s^p &\approx 0.26 \\ \xi_d^n &\approx 0.042 \,, \quad \xi_u^n &\approx 0.018 \,, \quad \xi_s^n &\approx 0.26 \end{aligned}$$

e.g., Ellis, Olive, Savage, 0801.3656

Going from quark level to nucleon level

$$f_{N} = \sum_{q=u,s,d} G_{q} \frac{m_{N}}{m_{q}} \xi_{q}^{N} + \frac{2}{27} \left(1 - \sum_{q=u,s,d} \xi_{q}^{N} \right) \sum_{q=c,b,t} G_{q} \frac{m_{N}}{m_{q}}$$

 $\begin{aligned} \xi^p_d &\approx 0.033 \,, \quad \xi^p_u &\approx 0.023 \,, \quad \xi^p_s &\approx 0.26 \\ \xi^n_d &\approx 0.042 \,, \quad \xi^n_u &\approx 0.018 \,, \quad \xi^n_s &\approx 0.26 \end{aligned}$

examples:

Higgs mediated interactions:
$$G_q = \frac{\lambda y_q}{m_H^2} \propto m_q = y_q \langle H \rangle$$

 $f_N = \frac{\lambda}{m_H^2} \frac{m_N}{\langle H \rangle} \sum_{q=u,s,d} \xi_q^N + \frac{2}{9} \left(1 - \sum_{q=u,s,d} \xi_q^N \right) \approx \frac{\lambda}{m_H^2} \frac{m_N}{\langle H \rangle} \xi_s^N$

Higgs mediated interaction dominated by s-quark and $f_n\approx f_p$ $_{\rm T.~Schwetz}$

Going from quark level to nucleon level

$$f_{N} = \sum_{q=u,s,d} G_{q} \frac{m_{N}}{m_{q}} \xi_{q}^{N} + \frac{2}{27} \left(1 - \sum_{q=u,s,d} \xi_{q}^{N} \right) \sum_{q=c,b,t} G_{q} \frac{m_{N}}{m_{q}}$$

 $\begin{aligned} \xi_d^p &\approx 0.033 \,, \quad \xi_u^p &\approx 0.023 \,, \quad \xi_s^p &\approx 0.26 \\ \xi_d^n &\approx 0.042 \,, \quad \xi_u^n &\approx 0.018 \,, \quad \xi_s^n &\approx 0.26 \end{aligned}$

examples:

flavour universal couplings: $G_q = G$

$$f_N \approx Gm_N \sum_{q=u,s,d} \frac{\xi_q^N}{m_q}, \qquad \frac{m_d}{m_u} \simeq 2, \quad \frac{m_d}{m_u} \simeq 20$$

 $\Rightarrow f_n \simeq f_p$

Going from nucleon to nucleus level

for coherent interaction on all nucleons in nucleus (A, Z):

 $\propto [f_p Z + f_n (A - Z)]^2$

momentum transfer: $q = \sqrt{2m_A E_R} \sim 20 - 100 \text{ MeV} \sim 1/(10 - 2 \text{ fm})$ when the momentum transfer becomes comparible to the size of the nuclues interactions will no longer be coherent \rightarrow nucleus form factor \sim Fourier transform of density distribution (assume matter \propto charge, charge distr. from electron scattering) parameterization:

$$F(q^2) = 3e^{-rac{q^2s^2}{2}}rac{\sin(qr) - qr\cos(qr)}{(qr)^3}, \qquad s = 1\,{
m fm}, r \sim A^{1/3}\,{
m fm}$$

Going from nucleon to nucleus level

for coherent interaction on all nucleons in nucleus (A, Z):

 $\propto [f_p Z + f_n (A - Z)]^2$

momentum transfer: $q = \sqrt{2m_A E_R} \sim 20 - 100 \text{ MeV} \sim 1/(10 - 2 \text{ fm})$ when the momentum transfer becomes comparible to the size of the nuclues interactions will no longer be coherent \rightarrow nucleus form factor \sim Fourier transform of density distribution (assume matter \propto charge, charge distr. from electron scattering) parameterization:

$$F(q^2) = 3e^{-rac{q^2s^2}{2}}rac{\sin(qr) - qr\cos(qr)}{(qr)^3}, \qquad s = 1\,{
m fm}, r \sim A^{1/3}\,{
m fm}$$

Event spectrum for SI elastic scattering

spectrum gets shifted to low energies for low WIMP masses \Rightarrow need light target and/or low threshold on E_R to see light WIMPs T. Schwetz
Event spectrum for SI elastic scattering

dependence on the target nucleus:

nuclear form factor is less important for low mass WIMPs

elastic scattering exclusion curve

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

many exps. running and setting relevant limits:

CDMS (Ge, Si), CoGeNT (Ge), COUPP (CF₃I), CRESST (CaWO₄), DAMA (NaI), Edelweiss (Ge), KIMS (CsI), PICASSO (F), SIMPLE (C₂CIF₅), TEXONO (Ge), XENON (Xe), ZEPLIN (Xe),...

appologizes for the ones I forgot

different target materials and different techniques used

lecture by J. Jochum

XENON100

2 phase (gas/liquid) Xenon detector @ Gran Sasso S1: prompt scintillation signal, S2: delayed ionization signal

48 kg fid., 100.9 days (Jan to June 2010) $_{1104.2549}$ 3 events observed, 1.8 ± 0.6 background expectation

XENON100 limit on spin-indep. interactions

XENON100 limit on spin-indep. interactions

SI cross section: $\sigma_p \sim \frac{G_{\text{eff}}^2 m_p^2}{\pi}$

 Z_0 mediated interaction: $\sigma_p \sim \lambda_{\chi Z}^2 \frac{G_F^2 m_p^2}{\pi} \sim 10^{-38} \, {\rm cm}^2 \, \lambda_{\chi Z}^2$

"heavy Dirac neutrino" is excuded as DM by many orders of magnitude

T. Schwetz

XENON100 limit on spin-indep. interactions

SI cross section: $\sigma_{p} \sim \frac{G_{\mathrm{eff}}^{2} m_{p}^{2}}{\pi}$

Higgs mediated interaction: $\sigma_p \sim 10^{-44} \,\mathrm{cm}^2 \,\left(\frac{\lambda_{\chi}}{0.1}\right)^2 \left(\frac{115\,\mathrm{GeV}}{m_H}\right)^4$

implications of $\sigma_{\rm scat} \lesssim 10^{-44} {\rm cm}^2$ for the WIMP argument

$$\Omega_{\chi} h^2 \simeq rac{10^{-37} \mathrm{cm}^2}{\langle \sigma_{\mathrm{annih}} v
angle} = 0.1126 \pm 0.0036$$

assume a Higgs mediated interaction:

$$\mathcal{L} = \lambda_{\chi} H_1 \bar{\chi} \chi + y_q \bar{q}_L H_2 q_R + h.c. \quad \rightarrow \quad \langle \sigma_{\rm ann} v \rangle \approx \frac{3m_{\chi}^2 \lambda_{\chi}^2 y_q^2 \langle v^2 \rangle}{8\pi (4m_{\chi}^2 - m_H^2)^2}$$

 \Rightarrow for $m_{\chi} = 50$ GeV, $m_H = 115$ GeV, $\lambda_{\chi} = 0.1$:

 $\langle \sigma_{bb} v \rangle \approx 10^{-38} \mathrm{cm}^2$

"typical" annihilation cross section is too low \rightarrow overproduce DM

implications of $\sigma_{\rm scat} \lesssim 10^{-44} {\rm cm}^2$ for the WIMP argument

poster by D. Schmidt

implications of $\sigma_{\rm scat} \lesssim 10^{-44} {\rm cm}^2$ for the WIMP argument

need mechanism to enhance annihilation cross section:

- ▶ go to the *s*-channel resonance $2m_{\chi} \approx m_{\rm mediator}$
- ▶ additional annihilation channels (W^{\pm} , light mediator particles,...)
- co-annihilations

$\sigma_{ m scat} \lesssim 10^{-44} { m cm}^2$ and the CMSSM

Bertone, Cerdeno, Ruiz de Austri, Fornasa, Strege, Trotta, 1107.1715

implications of $\sigma_{ m scat} \lesssim 10^{-44} { m cm}^2$ for the WIMP argument

- XENON100 is probing an exciting region of parameter space, motivated by the argument of DM thermal freeze-out
- if no signal is found within 1-2 orders of magnitude in σ the WIMP hypothesis will come under pressure, and one should start to think about alternatives ("secluded" models, non-thermal DM production, non-WIMP candidates,...)

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

- a few experiments report "hints" for WIMP interactions: CoGeNT, DAMA, (CRESST?)
 - \Rightarrow WIMPs (SI) in the low-mass (\sim 10 GeV) region?
 - \Rightarrow or maybe something more exotic
 - \Rightarrow or have nothing to do with DM at all
- Severe constraints from CDMS and XENON10/100

10 GeV WIMPs?

"conventional" WIMP has $\sim 100~\text{GeV}$

light WIMP must not couple to Z^0 (LEP)

Scalar singlet DM

add scalar singlet to the SM with Z_2 symmetry

Silveira, Zee, 85; McDonald 94; Burgess, Pospelov, Veldhuis, 00; Andreas, Arina, Hambye, Ling, Tytgat, 1003.2595;...

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2} \partial_{\nu} S \partial^{\nu} S - \frac{1}{2} \mu^2 S^2 - \frac{1}{2} \lambda_1 S^4 - \lambda_2 S^2 H^{\dagger} H$$

communication with the SM via the "Higgs portal" λ_2 relic abundance obtained for $m_S\sim 10$ GeV with right cross section

He, Li, Li, Tandean, Tsai, 09

MSSM neutralino

LEP Z^0 invis width OK by making it mostly bino, but have to depart from CMSSM to make it light \Rightarrow non-universal gaugino masses

e.g., Bottino, Donato, Fornengo, Scopel, 02,03,07,08,09; Hooper, Plehn, 02; Belanger, Boudjema, Cottrant, Pukhov,

Rosier-Lees, 03; Asano, Matsumoto, Senami, Sugiyama, 09; Hisano, Nakayama, Yamanaka, 09; Kuflik, Pierce, Zurek,

1003.0682; Feldman, Liu, Nath, 1003.0437; Albornoz, Belanger, Boehm, Pukhov, Silk, 1009.4380; Fornengo, Scopel, Bottino,

1011.4743; Calibbi, Ota, Takanishi, 1104.1134

 $B_s \rightarrow \mu^+ \mu^-$, Tevatron light Higgs searches, B, K decays fine-tuned region allows $m_{\chi} \sim 10 \text{ GeV} \rightarrow \text{tested soon}$

MSSM extensions

NMSSM (singlino component)

e.g., Gunion, Hooper, McElrath, hep-ph/0509024; Bae, Kim, Shin, 1005.5131; Das, Ellwanger, 1007.1151; Belikov, Gunion, Hooper, Tait, 1009.0549; Gunion, Belikov, Hooper, 1009.2555; Draper, Liu, Wagner, Wang, Zhang, 1009.3963; Albornoz, Belanger, Boehm, Pukhov, Silk, 1009.4380; Kappl, Ratz, Winkler, 1010.0553

• sneutrino: MSSM + ν_R

Arkani-Hamed, Hall, Murayama, Tucker-Smith, Weiner, 00; Belanger, Kakizaki, Park, Kraml, Pukhov, 1008.0580

Asymmetric Dark Matter

Nussinov, 1985; Barr, Chivukula, Farhi, 1990; Barr, 1991; Kaplan, 1992; Kaplan, Luty, Zurek, 0901.4117; An, Chen, Mohapatra,
Zhang, 0911.4463; Shelton, Zurek, 1008.1997; Davoudiasl, Morrissey, Sigurdson, Tulin, 1008.2399; Haba, Matsumoto,
1008.2487; McDonald, 1009.3227; Chun, 1009.0983; Buckley, Randall, 1009.0270; Gu, Lindner, Sarkar, Zhang, 1009.2690;
Blennow, Dasgupta, Fernandez-Martinez, Rius, 1009.3159; Allahverdi, Dutta, Sinha, 1011.1286 Falkowski, Ruderman, Volansky,
1101.4936; Haba, Matsumoto, Sato, 1101.5679; Graesser, Shoemaker, Vecchi, 1103.2771; Frandsen, Sarkar, Schmidt-Hoberg,
1103.4350; McDermott, Yu, Zurek, 1103.5472; Kouvaris, Tinyakov, 1104.0382; Buckley, 1104.1429;...

$$rac{\Omega_{DM}}{\Omega_B} = rac{n_{DM}}{n_B} rac{m_{DM}}{m_p} \simeq 5$$

DM carries some quantum number; invoke common mechanism for baryon and DM genesis: $n_{\rm DM} \sim n_B \implies m_{\rm DM} \sim m_p$

CoGeNT: exponential event excess and hint for modulation

Germanium detector with very low threshold of 0.4 keVee $\approx 1.9\,\text{keV}_{\textit{nr}}$

Annual modulation in CoGeNT

0.5 – 3 keV: $\chi^2_{
m no\ mod}=20/15$ (17%)

Annual modulation in CoGeNT

 $0.5-3~{
m keV}$: 2.8σ preference for modulation Aalseth et al, 1106.0650

Annual modulation in CoGeNT

Fitting CoGeNT with elastic SI scattering

Fitting CoGeNT with elastic SI scattering

DAMA/LIBRA annual modulation signal

Scintillation light in Nal detector, 1.17 t yr exposure (13 yrs) $\sim 1 \text{ cnts/d/kg/keV} \rightarrow \sim 4 \times 10^5 \text{ events/keV}$ in DAMA/LIBRA $\sim 8.9\sigma$ evidence for an annual modulation of the count rate with maximum at day 146 ± 7 (June 2nd: 152) Bernabei et al., 0804.2741, 1002.1028

DAMA/LIBRA annual modulation signal

Scintillation light in Nal detector, 1.17 t yr exposure (13 yrs) $\sim 1 \text{ cnts/d/kg/keV} \rightarrow \sim 4 \times 10^5 \text{ events/keV}$ in DAMA/LIBRA $\sim 8.9\sigma$ evidence for an annual modulation of the count rate with maximum at day 146 ± 7 (June 2nd: 152) Bernabei et al., 0804.2741, 1002.1028

the time-integrated event rate in DAMA

CRESST-II

Talks by W. Seidel @ WONDER 2010, IDM 2010

CaWO4 target, 9 detectors, about 400 kg d

excess of single-scatter events in O-band (magenta)

observe 32 events, expect 8.7 \pm 1.4 background shape agrees with \sim 10 GeV WIMP

Hints not quite consistent...

WARNING: CRESST region very speculative! \Rightarrow will change/go away(?) when detailed information on CRESST events and background becomes available

Can we make CoGeNT and DAMA consistent?

Hooper, Collar, Hall, McKinsey, 1007.1005; Hooper, Kelso, 1106.1066 How well do we know the quenching factor of Na?

CDMS constraints

- CDMS data on Si astro-ph/0509259: 12 kg day, 7 keV threshold
- low-threshold analysis of Soudan Ge data (2006–08)

1011.2482

do not insist on full NR/electr discrimination \rightarrow

accept some background \rightarrow lower threshold to 2 keV

CDMS constraints

energy scale uncertainty in CDMS low-thr?

XENON bounds

translate *S*1 [PE] into *E*_{nr} [keV]:

$$E_{nr} = \frac{S1}{L_{eff}(E_{nr})} \frac{1}{L_v} \frac{S_e}{S_n}$$

heated discussion: Collar, McKinsey, 1005.0838; XENON100, 1005.2615; Collar, McKinsey, 1005.2615; Savage et al., 1006.0972; Sorensen, 1007.3549; Collar, 1006.2031, 1106.0653

XENON bounds

Bezrukov, Kahlhoefer, Lindner, 1011.3990

translate S1 [PE] into E_{nr} [keV]: $E_{nr} = \frac{S1}{L_{eff}(E_{nr})} \frac{1}{L_{y}} \frac{S_{e}}{S_{n}}$

heated discussion: Collar, McKinsey, 1005.0838; XENON100, 1005.2615; Collar, McKinsey, 1005.2615; Savage et al., 1006.0972; Sorensen, 1007.3549; Collar, 1006.2031, 1106.0653

relation between ionization and scintillation suggest high L_{eff} .

XENON bounds

translate *S*1 [PE] into *E*_{nr} [keV]:

$$E_{nr} = \frac{S1}{L_{eff}(E_{nr})} \frac{1}{L_v} \frac{S_e}{S_n}$$

heated discussion: Collar, McKinsey, 1005.0838; XENON100, 1005.2615; Collar, McKinsey, 1005.2615; Savage et al., 1006.0972; Sorensen, 1007.3549; Collar, 1006.2031, 1106.0653

S2 only analysis of XENON 10 data Sorensen @ iDM 2010; J. Angle et al. 1104.3088 energy scale from ionization signal (S2) \rightarrow independent of L_{eff}

see also Collar, 1010.5187, 1106.0653
How to reconcile?

Experimental issues?

 $\sim 10~\text{GeV}$ region is experimentally challenging systematic uncertainties on quenching factors, energy scale, threshold effects, backgrounds... have to be understood and taken into account before making strong statements.

However, in order to get a consistent picture we need to assume that

- CDMS made a major calibration error (in Ge and Si),
- the XENON S2 analysis is completely wrong,
- there is a serious problem with L_{eff} in Xenon, and
- major error in the Na quenching factor determination for DAMA

Modify astrophysics?

changing \bar{v} , $v_{\rm esc}$ has little impact on consistency non-standard halos (asymmetric, DM streams, dark disc) may marginally improve but require extreem params

left: value of vesc TS, 1011.5432; right: asymmetric velocity distr. Fairbairn, TS 0808.0704

halo indep. comparison of experiments: Fox, Kribs, Tait 1011.1910; Fox, Liu, Weiner, 1011.1915 T. Schwetz 73

Modify astrophysics?

changing \bar{v} , $v_{\rm esc}$ has little impact on consistency non-standard halos (asymmetric, DM streams, dark disc) may marginally improve but require extreem params

left: value of vesc TS, 1011.5432; right: asymmetric velocity distr. Fairbairn, TS 0808.0704

halo indep. comparison of experiments: Fox, Kribs, Tait 1011.1910; Fox, Liu, Weiner, 1011.1915 T. Schwetz 73

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

Let's depart from elastic SI scattering

- spin-dependent interaction
- inelastic DM Tucker-Smith, Weiner, hep-ph/0101138
- inelastic SD Kopp, Schwetz, Zupan, 0912.4264
- mirror DM R. Foot; An, Chen, Mohapatra, Nussinov, Zhang, 1004.3296
- Ieptophilic DM Fox, Poppitz, 0811.0399; Kopp, Niro, Schwetz, Zupan, 0907.3159
- ► form factor DM Feldstein, Fitzpatrick, Katz, 0908.2991
- ▶ momentum dep. DM Scattering Chang, Pierce, Weiner, 0908.3192
- resonant Dark Matter Bai, Fox, 0909.2900
- ► Iuminous Dark Matter Feldstein, Graham, Rajendran, 1008.1988
- electro-magnetic DM interactions Masso, Mohanty, Rao, 0906.1979; Chang, Weiner, Yavin,

1007.4200; Barger, Keung, Marfatia, 1007.4345; Fitzpatrick, Zurek, 1007.5325; Banks, Fortin, Thomas, 1007.5515

iso-spin violating SI scattering Chang, Liu, Pierce, Weiner, Yavin, 1004.0697;

Feng, Kumar, Marfatia, Sanford, 1102.4331; Frandsen et al., 1105.3734

more to come

Spin-dependent scattering

coupling mainly to an un-paired nucleon:

		neutron	proton
DAMA	$^{23}_{11}Na$	even	odd
DAMA, KIMS, COUPP	127 53	even	odd
SIMPLE	³⁵ ₁₇ Cl, ³⁷ ₁₇ Cl	even	odd
XENON, ZEPLIN	¹²⁹ Xe, ¹³¹ Xe	odd	even
CDMS, CoGeNT	⁷³ ₃₂ Ge	odd	even
PICASSO, COUPP, SIMPLE	¹⁹ ₉ F	even	odd
CRESST	^A ₇₄ W, ¹⁶ O, ⁴⁰ ₂₀ Ca	even	even

coupling with proton promising for DAMA vs CDMS/XENON BUT: severe bounds from COUPP, KIMS, PICASSO, SIMPLE

Spin-dependent scattering

Schwetz, Zupan, 11

Constraints from Tevatron

assume effective quark DM interaction:

 $\frac{\lambda^2}{\Lambda^2} (\bar{q} \gamma_5 \gamma_\mu q) (\bar{\chi} \gamma_5 \gamma^\mu \chi) \quad \Rightarrow \quad pp \to \bar{\chi} \chi + j$

constraints from mono-jet searches at Tevatron assume EFT is still valid at \sim TeV momentum transfer

e.g., Feng, Su, Takayama, hep-ph/0503117; Beltran et al., 1002.4137; Goodman et al., 1005.1286; ...

Bai, Fox, Harnik, 1005.3797

SD and constraints from neutrinos

SD interactions on protons \rightarrow large WIMP capture cross section in the sun WIMPs may annihilate and produce high energy neutrinos \rightarrow constraints from SuperKamiokande

In relation to light DM: e.g., Feng, Kumar, Learned, Strigari, 0808.4151; Andreas, Tytgat, Swillens, 0901.1750; Niro, Bottino,

Fornengo, Scopel, 0909.2348; Hooper, Petriello, Zurek, Kamionkowski, 0808.2464

Kappl, Winkler, 1104.0679

Inelastic DM scattering $_{\mbox{\tiny Tucker-Smith},\mbox{\scriptsize Weiner},\mbox{\scriptsize 01}}$

- sampling only high-velocity tail of velocity distribution
- no events at low recoil energies
- high mass targets favoured

enhance modulation compared to unmodulated signal
 T. Schwetz

Inelastic DM scattering Tucker-Smith, Weiner, 01

- sampling only high-velocity tail of velocity distribution
- no events at low recoil energies
- high mass targets favoured

enhance modulation compared to unmodulated signal
 T. Schwetz

iDM and CoGeNT modulation

make mod and unmod spectrum consistent but cannot explain rate
 XENON bound still severe

iDM and DAMA modulation

talk by W. Seidel @ IDM 2010

disfavored by XENON100 and CRESST (tungsten)

Inelastic spin-dependent scattering on protons

- SD coupling to proton gets rid of XENON/CDMS/CRESST bounds (no unpaired proton)
- inelastic scatt. gets rid of PICASSO/COUPP (light target)

Inelastic spin-dependent scattering on protons

BUT:

- cannot explain CoGeNT/CRESST-O
- ▶ neutrinos from the sun (annih. into u, d, μ, e still OK) Shu, Yin, Zhu, 1001.1076
- probably mono-jet bounds from Tevatron apply

iSD - toy model

Kopp, Schwetz, Zupan, 09: generalize idea of Tucker-Smith, Weiner, 01 to SD int.: assume 4-Fermi interaction with $T \otimes T$ structure:

$$\mathcal{L}_{\rm int} = \frac{C_{\rm T}}{\Lambda^2} \left[\bar{\psi} \Sigma_{\mu\nu} \psi \right] \left[\bar{q} \Sigma^{\mu\nu} q \right], \qquad \Sigma^{\mu\nu} = i [\gamma^{\mu}, \gamma^{\nu}]/2$$

 $\psi = (\eta, \xi^{\dagger})$ with Dirac $m\bar{\psi}\psi$ and Majorana mass $(\delta_{\eta}\eta\eta + \delta_{\xi}\xi\xi)/2$ \Rightarrow two Majorana fermions with masses $m \pm \delta$ $(\delta_{\eta} = \delta_{\xi} = \delta \ll m)$:

$$\chi_1 = i(\eta - \xi)/\sqrt{2}, \qquad \chi_2 = (\eta + \xi)/\sqrt{2}$$

$$\Rightarrow \quad \bar{\psi} \Sigma_{\mu\nu} \psi = -2i(\chi_2 \sigma_{\mu\nu} \chi_1 + \chi_2^{\dagger} \bar{\sigma}_{\mu\nu} \chi_1^{\dagger}),$$

• inelastic scattering for $\delta \neq 0$

 \blacktriangleright T \otimes T leads to spin dependent scattering in the non-rel. limit

magnetic inelastic DM

observe that I, Cs, Na, F nuclei have very large effective MM assume DM has MM: $\mathcal{L} = \frac{\mu_{\chi}}{2} \bar{\chi}^* \sigma_{\mu\nu} \chi F^{\mu\nu} + h.c.$

Chang, Weiner, Yavin, 1007.4200

- use large MM of iodine to enhance rate in DAMA
- inelast kinematics avoids florine constraints (light target)
- no explanation for CoGeNT/CRESST-O

Generalized couplings to neutron and proton

SI scattering cross section $\propto [Zf_p + (A - Z)f_n]^2$ typically (iso-spin symmetry) one has $f_n \approx f_p \Rightarrow SI \propto \sigma_p A^2$

consider quark operator $G_q \bar{q} q \bar{\chi} \chi \rightarrow$ eff. coupling to nucleon N = p, n:

$$\xi_N = \sum_q G_q \langle N | \bar{q}q | N \rangle$$
$$= \sum_{q=u,s,d} G_q \frac{m_N}{m_q} \xi_q^N + \frac{2}{27} \left(1 - \sum_{q=u,s,d} \xi_q^N \right) \sum_{q=c,b,t} G_q \frac{m_N}{m_q}$$
$$\xi_q^P \simeq 0.033 \quad \xi_q^P \simeq 0.023 \quad \xi_q^P \simeq 0.26$$

 $\begin{aligned} \xi_d^{\mu} &\approx 0.033 \,, \quad \xi_u^{\nu} \approx 0.023 \,, \quad \xi_s^{\nu} \approx 0.26 \\ \xi_d^{n} &\approx 0.042 \,, \quad \xi_u^{n} \approx 0.018 \,, \quad \xi_s^{n} \approx 0.26 \end{aligned}$

 \Rightarrow ex.: Higgs mediated interaction dominated by *s*-quark and $f_n \approx f_p$

Generalized couplings to neutron and proton

allow for general couplings: Chang et al., 1004.0697; Feng, Kumar, Marfatia, Sanford, 1102.4331; Frandsen et al., 1105.3734; Nobile, Kouvaris, Sannino, 1105.5431

$${\sf SI} \propto \sigma_{\sf eff} {\sf A}_{\sf eff}^2$$
 with

$$\sigma_{\rm eff} \equiv \frac{\sigma_n + \sigma_p}{2}, \qquad \tan \theta \equiv f_n / f_p$$
$$A_{\rm eff}^2 = 2 \sum_{i=\rm iso} r_i [Z \cos \theta + (A_i - Z) \sin \theta]^2$$

for $f_n/f_p < 0$: cancellations \Rightarrow can suppress rate for isotope if $f_n/f_p = -Z/(A-Z)$

Generalized couplings to neutron and proton

suppress Xe rate for $f_n/f_p \approx -0.7$, but enhanced rate for Si and F constraint from CDMS low-threshold Ge analysis remains

Generalized couplings to neutron and proton + inelasticity

proposed to reconcile CoGeNT modulation and DAMA

Frandsen et al., 1105.3734; poster by F. Kahlhoefer

TS, Zupan, 11

DM scattering off electrons

- ► DAMA and CoGeNT do not discriminate nuclear recoil and electron events ⇒ pure electron events fully contribute
- CDMS, XENON10, CRESST, KIMS, ZEPLIN,... reject electron events to perform a low background search for nuclear recoils

DM scattering off electrons

DM scattering off electrons at rest: recoils of order $m_e v^2 \sim eV$ cannot account for the DAMA signal at few keV

 \Rightarrow bound electrons with $p \sim$ MeV, Bernabei et al., 0712.0562

wave function suppression of count rate $\sim 10^{-6}$

Loop induced DM-nucleus scattering

an effective interaction of DM with electrons can induce DM-nucleus interactions at loop level:

whenever loop-induced DM-nucleon scattering is present it will dominate over scattering off electrons because of the wave function suppression \Rightarrow Have to forbid loop diagrams!

example: fermionic DM with axial-vector coupling

$$\mathcal{L}_{ ext{eff}} = \mathit{G}\left(ar{\chi} \gamma_{\mu} \gamma_{5} \chi
ight) (ar{\ell} \gamma^{\mu} \gamma_{5} \ell) \qquad ext{with} \qquad \mathit{G} = 1/\Lambda^{2}$$

Kopp, Niro, Schwetz, Zupan, 0907.3159

Axial coupling without loop

Best fit prediction for the modulated and unmodulated spectrum in DAMA from DM-electron scattering

 \Rightarrow disfavoured by spectral shape and constraint from unmodulated event rate (similar for CoGeNT)

Axial coupling without loop

Kopp, Niro, TS, Zupan, 0907.3159; 1011.1398

- ▶ very "large" Xsec: $\sigma_{\chi e}^0 \sim 10^{-31} \, \mathrm{cm}^2 \left(\frac{\mathrm{m}_{\chi}}{100 \, \mathrm{GeV}} \right)$ requires $\Lambda \lesssim 0.1 \, \mathrm{GeV}$
- excluded by SuperK constraints on neutrinos from the sun
- severe constraints from LEP Fox, Harnik, Kopp, Tsai, 1103.0240

Outline

Thermal freeze-out of Dark Matter

The WIMP miracle

Dark Matter direct detection

Direct detection: present status

Hints for a DM signal?

Alternative particle physics

Conclusion

Conclusions

- Thermal freeze-out provides a motivation for DM at the weak scale:
 WIMP
- ▶ we are probing the WIMP hypothesis with direct detection, indirect detection, and LHC ⇒ exciting times ahead!
- \blacktriangleright Some hints for DM around 10 GeV from direct detection \Rightarrow in tension with constraints
- Also exotic particle physics seems not to be able to fit all

More data will tell