

Plans and prospects for the Hyper-Kamiokande detector

M.Miura Kamioka Observatory, ICRR BLV 2013, Heidelberg

Contents

Introduction
 Hyper-Kamiokande detector
 Prospects for nucleon decay search
 R&D status and plans
 Summary

1. Introduction

Kamiokande (1983-1996)

3000 ton, ~1000 PMTs - Observed Super Nova)neutrino.

Super-Kamiokande (1996-Now)

50,000 ton, ~11,000 PMTs - Found neutrino oscillations

•••• Need larger detector

- Neutrino Oscillation
 - θ_{13} is measured in 2012, non-zero and not so small.
 - Long base line experiments have chance to measure δ_{CP} .

 \rightarrow use $\overline{\nu}_{\mu}$, cross section is lower than ν_{μ}

- Mass hierarchy and Octant of $\theta_{13} \leftarrow$ Atmospheric v with MSW effect.
- Statistics is crucial !
- Nucleon decay search
 - Explored until 0.2 Mton-year exposure in Super-K.
 - No evidence found yet.

→ Need more exposure !

1 Mega ton Water Chrenkov Detector

Base design

- Total Volume: 0.99 Mton
- Inner Volume: 0.74 Mton
- Fiducial volume: 0.56 Mton

(0.056 Mton x 10 compartments)

- Outer volume: 0.2 Mton
- Photo-sensors:

99,000 20 inch PMT (ID)

(20 % photo coverage)

25,000 8 inch PMT (OD)

Hyper-K candidate site

8km south from Super-K
same T2K beam off-axis angle (2.5 degree)
same baseline length (295km)
2.6km horizontal drive from entrance
under the peak of Nijuugo-yama
648m of rock or 1,750 m.w.e. overburden
13,000 m³/day or 1megaton/80days natural water

Physics Topics in Hyper-K

- Accelerator v beam
- Atmospheric v
- Solar v

v oscillation with CP violation

- Astrophysical v (Super Nova, Dark matter, e.t.c.)
- v geophysics
- Nucleon decay

GUTs, B&L Violation

3. Prospect for nucleon decay by Hyper-K

- Nucleon decay experiment is the direct probe for GUTs.
- $p \rightarrow e^+\pi^0$ (non-SUSY GUTs), $p \rightarrow \bar{\nu}K^+$ (SUSY-GUTs) are regarded as the dominant mode.
- Why water cherenkov detector ?

➢ Nucleon decay is extremely rare event. Need large number of nucleon.

 \rightarrow (relatively) easy to enlarge detector size.

- > Two free protons, without interaction in nucleus.
 - → High efficiency for $p \rightarrow e^+ \pi^0$, e.t.c. .

How far we have explored by Super-K

•

•

$p \rightarrow e^+ \pi^0$

Event features;

e⁺ and π⁰ are back-to-back (459 MeV/c)
π⁰ →2 γs : all particles can be detectable.
→ Reconstruct proton mass and momentum.

Selection;

- Fully contained, VTX in fiducail volume.
- 2 or 3 ring .
- all e-like, w/o decay-e.
- •85 $< M\pi^0 < 185$ MeV (for 3-ring event) .
- $800 < M_P < 1050 \text{ MeV} \& P_{tot} < 250 \text{ MeV/c}$

Minimal SU(5) model

All particles can be seen by water cherenkov detector

M_{tot} vs P_{tot} (after all other cuts)

* Inefficiency mostly due to π^0 interaction in nucleus (absorption, scattering, charge exchange).

•

* Dominant BKG: $CC1\pi$ $\overline{\nu}_{e}p \rightarrow e^{+}n\pi^{0}$ $\nu_{e}n \rightarrow e^{-}n\pi^{+}$ +charge exchange

Performance of Hyper-K for $p \rightarrow e^+ \pi^0$

Efficiency: 45 % (87 % for free proton) * photo coverage 20 %, but almost same performance is expected with current SK case (40 %). Phys.Rev.Lett. 102,141801(2009) Background rate: 1.6 events/Mton - year * Consistent with the estimation by using Acc. v data $(K2K), 1.63^{+0.62}_{-0.61}$ events/Mton • year. Phys.Rev.D77,032003 (2008) * Room for improvement if neutron can be tagged (neutron is captured by water after a few 100 usec and 2.2 MeV γ is emitted).

• Discovery potential for $p \rightarrow e^+ \pi^0$

Total mass with 10yrs run assuming life time

Sensitivity for $p \rightarrow e^+\pi^0$ (90 % CL)

10 yrs run (5.6 Mton•yrs) → reach to 1.3x10³⁵ yrs (90 %CL)

$p \rightarrow \bar{\nu} + K^+$

* Cannot see K⁺, stop in water \rightarrow use decay products A) K⁺ $\rightarrow \mu^+ + \nu_{\mu}$

Selection:

- 1 µ-like ring with decay-e.
- $215 < P\mu < 260 \text{ MeV/c}$
- Search Max hit cluster by sliding time window (12ns width);
- $4 < N\gamma < 30$ hits $T_u - T_{\gamma} < 75$ nsec

Event features;

- 2 body decay ($P_{\mu} = 236 \text{ MeV/c}$).
- \rightarrow Excess in P_µ.
- Proton in ¹⁶O decays and excited nucleus emits 6 MeV γ (Prob. 41%, not clear ring).
- \rightarrow Tag γ to eliminate BKG.

Recent improvement(1): $p \rightarrow v K^+, K^+ \rightarrow \pi^+ \pi^0$

of Ring: $K^+ \rightarrow \pi^+ \pi^0$

Judge as 1 ring if opening angle of 2 γ s is small or momentum of one γ is small,

Use " π^0 fitter"

- Make likelihood assuming π^0 and search for missing ring.
- It is used for v_e appearance analysis of T2K to reduce BKG.

It makes 1 ring sample available for this analysis!

→ efficiency increased.

Recent improvement(2): $p \rightarrow \nu K^+, K^+ \rightarrow \pi^+ \pi^0$

Conventional method: Use charge sum in <40° New method: Use charge sum in < 35° and compare shape by likelihood assuming signal and BKG.

How much improved ?

	Effi (%)	BKG/Mton•yr
$K^+ \rightarrow \pi^+ \pi^0$	6.6 (LOI) → 7.6	6.6 (LOI) → 1.8
$K^+ \rightarrow \mu \nu + nuclear \gamma$	7.1	1.6
K ⁺ →μν, Pμ	43	1940

Efficiency increased by 15 %, due to 1R sample.
BKG reduced by 72 %, due to angle cut and shape likelihood.
π⁺π⁰ method become comparable to prompt γ method !

Sensitivity curve for $p \rightarrow v \bar{K}^+$ (90 % C.L.)

Sensitivity for 5.6 Mton year exposure (10 years run) $2.5x10^{34} \rightarrow 3.2x10^{34}$ year

 3σ discovery potential $0.95 \times 10^{34} \rightarrow 1.23 \times 10^{34}$ year

~ 30 % improved from LOI !

Comparison with predictions

•

Can cover major models.

Other modes

~ 10 times better than SK with 10 year run.

Other physics potential

• δ_{CP} precision <20° with 7.5 MW \cdot years , s²2 θ_{13} >0.03 with MH known • MH determination $> 3\sigma$ CL with 10 yrs run, $0.4 < s^2 \theta_{23}$ and $0.04 < s^2 2 \theta_{13}$ θ_{23} octant determination > 90% CL with 10 yrs run, $s^2 2\theta_{23} < 0.99$ and $0.04 < s^2 2\theta_{13}$ Solar v from ⁸B 200 events/day with 7 MeV threshold Super Nova v 170,000~200,000 events @ Galactic center (10kpc)

Photo sensors:20 inch PMT in baseline design

- It is almost hand-made (even in electrics parts).
- Expensive and not suitable for mass production.
- But we need 99,000 PMTs.

Other possibility: Hybrid Photo Detector (HPD)

- Avalanche Diode is suitable for mass production.
 - ➔ lower cost.
- Better photon counting.
- Better collection efficiency .
 (20 inch PMT~75 %→HPD ~95%)
- Better timing resolution
 (20 inch PMT ~2.2 nsec → HPD ~1.1 ns in TTS)

 \rightarrow Expect to improve nuclear γ tagging efficiency in $p \rightarrow \bar{\nu} K^+$

2p.e

3p.e.

.e.

zn.e.

HPD for Hyper-K

• Target: 20 inch HPD, but no such a large one in the world.

→ Made 8 inch with Hamamatu photonics as test module. Now checking basic performance.

Never used in water (~8kV)

→ Install to test tank (200 ton) in this summer. Check water proof, long term stability, e.t.c.

Software development

- SK detector simulation : Based on GEANT3 Reconstruction tool: written in Fortran
- Now start to making Hyper-K detector simulation based on GEANT4.
- New reconstruction algorism written in C++: developing for SK and T2K analysis, also for Hyper-K.
 Evolving to improve physics reach!

Construction start **Target Schedule**

International Hyper-K meetings

First meeting: Aug. 23-24, 2012

http://indico.ipmu.jp/indico/conferenceTimeTable.py?confld=7

Second meeting: Jan. 14-15, 2013

http://indico.ipmu.jp/indico/conferenceTimeTable.py?confld=10

Hyper-K is completely open to the international community

~100 participants for each of two meetings (~half from abroad)

International working group was formed

Current members from Japan, Canada, Spain, Switzerland, Russia, UK, and US Next meeting: Jun. 21-22

5. Summary

- We are planning to build Hyper-Kamiokande, 1Mton class water cherenkov detector.
- Hyper-Kamiokande can explore **one order longer nucleon lifetime** than Super-K.
- Now international working group is forming and we welcome your join.

•

Backup

1

 \bigcirc

Comparison with Super-K

Schedule of HPD R&D

 \bigcirc

Measuring CP asymmetry w/ J-PARC v beam $P(v_{\mu} \rightarrow v_{e})$ appearance probability (normal hierarchy)

• Comparison between $P(\nu_{\mu} \rightarrow \nu_{e})$ and $P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

v_e candidate events after selection

 $\sin^2 2\theta_{13}=0.1, \delta=0$, normal MH

2000-4000 signal events expected for each of v and \overline{v}

- Good sensitivity for CPV

- modest dependence on θ_{13} value

δ resolution

 $sin^22\theta_{13}=0.1$

3-flavor oscillations in atmospheric v

Mass Hierarchy Sensitivity

- Sensitivity depends on θ_{23} , δ and mass hierarch (a little).
- 3σ mass hierarchy determination for sin²θ₂₃>0.42 (0.43) in the case of normal (inverted) hierarchy.

