Multicomponent Dark Matter and Light Sterile Neutrinos

Julian Heeck

Max-Planck-Institut für Kernphysik, Heidelberg

8.4.2013 BLV2013, Heidelberg

based on

JH, He Zhang,

arXiv:1211.0538.

INTERNATIONAL MAX PLANES RESEARCH SCHOOL

Hints for eV sterile neutrino(s)

Short-baseline neutrino experiments hint at sterile neutrino(s) with mass $m_4 \sim 1 \, {\rm eV}$ and active-sterile mixing $|U_{as}| \sim \mathcal{O}(0.1)$.

[[]Archidiacono et al., 1302.6720]

Cosmology likes extra d.o.f., but with smaller masses...

Full disclosure

• Appearance vs. disappearance:

- Reactor and Gallium: ν_e disappearance.
- LSND and MiniBooNE: $\nu_{\mu} \rightarrow \nu_{e}$ appearance.
- No ν_{μ} disappearance...?

 \Rightarrow Tension in global fit. 1+3+1 preferred over 3+1 and 3+2. . . [Kopp et al., 1303.3011]

• Planck @ 95% C.L.:

$$N_{
m eff} < 3.84\,, \qquad \qquad \sum m_{
u} < 0.23\,{
m eV}\,,$$

depending on the combination of data sets. [Planck coll., 1303.5076] \Rightarrow Tension between SBL and cosmology. [Mirizzi et al., 1303.5368]

Very puzzling. Let's embrace the hints!

How to make ν_s light?

Isn't new physics always at TeV?

• Use seesaw partners ν_R as steriles: eV-seesaw

$$\mathcal{M} = \begin{pmatrix} 0 & m_D \\ m_D^T & M_R \end{pmatrix}$$

with $m_D \sim 0.1\,{
m eV}$, $M_R \sim 1\,{
m eV}$. [de Gouvêa, PRD (2005)]

- Active-sterile mixing automatically large: $U_{as} \sim m_D/M_R \sim \sqrt{m_\nu/m_s} \sim 0.1.$
- Minimal 3 + 2 scheme: two ν_R at eV scale, works fine. [Donini, Schwetz et al., JHEP (2012)]
- Just throw in random O(1) couplings: sterile neutrino anarchy. [JH, Rodejohann, *PRD* (2013)]

 \Rightarrow The "heavy" eV-scale suppresses the "light" 0.1 eV?

How to make ν_s light? II

• Put ν_s on the other side of the seesaw:

• Suppressed BY seesaw: need additional right-handed singlet S and mass matrix for $(\nu_{\alpha}, \nu_{R,j}^{c}, S^{c})$

$$\mathcal{M}_{\mathrm{MES}} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & M_R & m_S \\ 0 & m_S^T & 0 \end{pmatrix}.$$

Minimal Extended Seesaw (MES) [Chun, Joshipura, Smirnov, *PLB (1995)*, Babu, Seidl, *PRD*, *PLB (2004)*, Barry, Rodejohann, Zhang, *JHEP (2011)*, Zhang, *PLB (2012)*]

• Works also for 3 + 2, 3 + 3,..., just add more singlets.

Minimal extended seesaw

$$\mathcal{M}_{\mathrm{MES}} = \begin{pmatrix} 0^{3 imes 3} & m_D & 0 \\ m_D^T & M_R^{3 imes 3} & m_S \\ 0 & m_S^T & 0^{1 imes 1} \end{pmatrix}$$

Assume $M_R \gg m_D, m_S$, usual seesaw:

$$\mathcal{M}_{\nu}^{4\times 4} \simeq - \begin{pmatrix} (m_D M_R^{-1} m_D^T)^{3\times 3} & m_D M_R^{-1} m_S \\ m_S^T M_R^{-1} m_D^T & (m_S^T M_R^{-1} m_S)^{1\times 1} \end{pmatrix}.$$

- ullet all masses suppressed by seesaw scale ${\it M_R}\sim 2\times 10^{14}\,{\rm GeV}.$ \checkmark
- sterile mass $m_4 \sim 1$ eV for $m_S \sim 5-10 m_D$.
- active-sterile mixing $U_{as} = O(m_D/m_S)$ automatically right.
- \Rightarrow SBL sterile neutrinos. \checkmark

Great, but how to get MES structure?

How to get MES

Need

 $\overline{L}\langle H \rangle \nu_R, \qquad m_S \overline{S^c} \nu_R, \qquad M_R \overline{\nu_R^c} \nu_R$ and forbid couplings $\overline{L} \langle H \rangle S, \qquad \overline{S^c} S.$

- Flavor symmetry $A_4 \otimes \mathbb{Z}_4$ (messy...). [Zhang, *PLB* (2012)]
- Abelian gauge symmetry U(1)': simple, but need additional fermions to cancel anomalies. [Babu, Seidl, *PLB* (2004)]
 - Cancel anomalies, make new fermions massive, and not disturb MES structure? With few scalars? Yes!

Magic numbers

	$\nu_{R,1}$	$\nu_{R,2}$	$\nu_{R,3}$	<i>S</i> ₁	<i>S</i> ₂	<i>S</i> ₃	<i>S</i> ₄	<i>S</i> ₅	S_6	<i>S</i> ₇	ϕ
Y'	0	0	0	11	-5	-6	1	-12	2	9	11

Mass matrix has nice block structure:

$$\mathcal{M} = \begin{pmatrix} (\mathcal{M}_{\text{MES}})_{7 \times 7} & 0 \\ 0 & (\mathcal{M}_{S})_{6 \times 6} \end{pmatrix}$$

with

$$\mathcal{M}_{\mathcal{S}} = egin{pmatrix} 0 & y_1\langle\phi
angle & 0 & 0 & 0 & 0 \ y_1\langle\phi
angle & 0 & 0 & 0 & 0 \ y_1\langle\phi
angle & 0 & 0 & y_2\langle\phi
angle & 0 & 0 \ 0 & 0 & y_2\langle\phi
angle & 0 & 0 & 0 \ 0 & 0 & y_2\langle\phi
angle & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & y_3\langle\phi
angle \ 0 & 0 & 0 & 0 & y_3\langle\phi
angle & 0 \end{pmatrix}.$$

 \Rightarrow S₁ gives MES, S_{2,3,4,5,6,7} decouple and form 3 Dirac fermions $\Psi_{1,2,3}$!

More numbers

- Happy "accident": ϕ breaks U(1)' to \mathbb{Z}_{11} . \Rightarrow all three Ψ_j stable!
- Active-sterile mixing $V_{4j} \sim \mathcal{O}(m_D/m_S) \stackrel{!}{=} \mathcal{O}(0.1)$.

Sterile Neutrinos

• For $\mathcal{O}(1)$ Yukawas $\Rightarrow U(1)'$ breaking at $\langle \phi \rangle \sim 10 \langle H \rangle \sim \text{TeV}$.

 \Rightarrow masses for Z', Re(ϕ), $\Psi_{1,2,3}$ around 100 GeV–TeV.

 \Rightarrow Multicomponent stable dark matter.

Breakdown of neutral fermions:

$$\underbrace{\nu_{e}, \nu_{\mu}, \nu_{\tau}, S_{1}, \underbrace{\nu_{R,1}, \nu_{R,2}, \nu_{R,3}}_{(3+1)\,\mathrm{MES}}, \underbrace{\underbrace{S_{2}, S_{3}, \underbrace{S_{4}, S_{5}, \underbrace{S_{6}, S_{7}}_{\mathrm{DM}}}_{\mathrm{DM}}}$$

Dark matter interactions

Lagrangian:

$$\sum_{j} \left[\mathrm{i}\overline{\Psi}_{j}\gamma^{\mu}\partial_{\mu}\Psi_{j} - M_{j}\left(1 + \frac{\mathrm{Re}(\phi)}{\langle \mathrm{Re}(\phi) \rangle}\right) \ \overline{\Psi}_{j}\Psi_{j} + \frac{g'}{2}Z'_{\mu}\overline{\Psi}_{j}\gamma^{\mu}\left(g_{j}^{\nu} + g_{j}^{\mathcal{A}}\gamma_{5}\right)\Psi_{j}\right]$$

with $g_1^V = 1$, $g_2^V = 13$, $g_3^V = -7$, $g_1^A = -11$, $g_2^A = -11$, $g_3^A = 11$.

Connection to the Standard Model just like all other $U(1)_{DM}$ models:

- Scalar mixing (Higgs portal): $\mathcal{L} \supset \delta |H|^2 |\phi|^2$ $\Rightarrow \Psi_i$ couple to Higgs. [Lopez-Honorez et al., *PLB (2012)*]
- Vector mixing (kinetic-mixing portal): $\mathcal{L} \supset \sin \xi \ F_Y^{\mu\nu} F'_{\mu\nu}$ $\Rightarrow \Psi_j$ couple to Z boson. [Mambrini, JCAP (2011)]

New:

• Fermion mixing (neutrino portal):

$$\mathcal{L} \supset \frac{11g'}{2} Z'_{\mu} \sum_{i,j=1}^{4} V_{4i}^* V_{4j} \ \left(\overline{\nu}_i \gamma^{\mu} \gamma_5 \nu_j + \overline{\nu}_i \gamma^{\mu} \nu_j \right) \,.$$

Neutrino portal

Relic density via neutrino portal

• Relic density via annihilation $\Psi\Psi \rightarrow Z' \rightarrow \nu_s \nu_s$ into sterile neutrinos.

Dark Matter

- Direct detection is loop-suppressed: $\sim \Delta m_{41}^2/(100\,{
 m GeV})^2 \sim 10^{-22}$.
- Indirect detection: $BR(\Psi\Psi \rightarrow \nu\nu) \simeq 100\%$ gives monochromatic neutrinos from Galactic halo. Too small for IceCube...
- Including Higgs portal and kinetic-mixing portal gives the usual measurable effects.

Summary

- Additional right-handed neutrinos with exotic charges under a broken U(1)' can generate structure in neutral fermions.
- Here: generate seesaw-suppressed sterile neutrino.
- Magic numbers: necessary anomaly-cancelling fermions form multicomponent DM.
- Gauge interactions open new SM–DM portal through sterile neutrinos.
- \Rightarrow Huge unexplored playground!

Other charges: 3 + 2, 3 + 3, Majorana DM, unstable DM, ...

Minimal extended seesaw

$$\mathcal{M}_{\text{MES}} = \begin{pmatrix} 0 & m_D & 0 \\ m_D^T & M_R & m_S \\ 0 & m_S^T & 0 \end{pmatrix}$$

Assume $M_R \gg m_D, m_S$, usual seesaw:

$$\mathcal{M}_{\nu}^{4\times 4} \simeq - \begin{pmatrix} m_D M_R^{-1} m_D^T & m_D M_R^{-1} m_S \\ m_S^T M_R^{-1} m_D^T & m_S^T M_R^{-1} m_S \end{pmatrix}.$$

For $m_S \gg m_D$, one more seesaw:

$$\mathcal{M}_{\nu}^{3\times3} \simeq -m_D M_R^{-1} m_D^T + m_D M_R^{-1} m_S (m_S^T M_R^{-1} m_S)^{-1} m_S^T M_R^{-1} m_D^T$$
and

$$m_4 \simeq m_s \simeq -m_S^T M_R^{-1} m_S$$
.

Active-sterile mixing

• Diagonalize $\mathcal{M}_{\nu}^{4 imes 4}$ with

$$W\simeq egin{pmatrix} (1-rac{1}{2}{\it R}{\it R}^\dagger)U_{
m PMNS} & {\it R}\ -{\it R}^\dagger U_{
m PMNS} & 1-rac{1}{2}{\it R}^\dagger {\it R} \end{pmatrix},$$

active-sterile mixing vector

$$R = m_D M_R^{-1} m_S (m_S^T M_R^{-1} m_S)^{-1} \sim \mathcal{O}(m_D/m_S).$$

• $m_D \sim 100 \,{\rm GeV}$, $m_S \sim 500 \,{\rm GeV}$ and $M_R \sim 2 \times 10^{14} \,{\rm GeV}$ give $m_\nu \sim 0.05 \,{\rm eV}$, $m_s \sim 1.3 \,{\rm eV}$, $R \simeq 0.2$

 \Rightarrow SBL sterile neutrinos. \checkmark

Neutrino anarchy

 Anarchy: complete absence of any symmetry in lepton mixing. [Hall, Murayama, Weiner, PRL (2000), de Gouvêa, Murayama, PLB (2003)]

Sterile Neutrinos Dark Matter

$$\mathcal{M}_{R} = \mathcal{M}_{R} \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}, \quad \mathcal{M}_{D} = m_{D} \begin{pmatrix} \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \\ \mathcal{O}(1) & \mathcal{O}(1) & \mathcal{O}(1) \end{pmatrix}$$

 \Rightarrow Lepton mixing angles follow Haar measure – all $U_{ij} \sim O(1)$.

- Linear measure for masses: statistical distribution of $\frac{\Delta m_{21}^2}{\Delta m_{21}^2}$.
- Sterile Anarchy: 3 + 2 eV-seesaw with anarchic entries.

 \Rightarrow One massless neutrino, no $0\nu\beta\beta$, no discovery at KATRIN. [JH, Rodejohann, *PRD (2013)*]